Why Does E=mc2?

Why Does E=mc2? : (And Why Should We Care?)

4.01 (6,480 ratings by Goodreads)
By (author)  , By (author) 

Free delivery worldwide

Available. Dispatched from the UK in 2 business days
When will my order arrive?


What does E=mc2 actually mean? Dr. Brian Cox and Professor Jeff Forshaw go on a journey to the frontier of twenty-first century science to unpack Einstein's famous equation. Explaining and simplifying notions of energy, mass, and light-while exploding commonly held misconceptions-they demonstrate how the structure of nature itself is contained within this equation. Along the way, we visit the site of one of the largest scientific experiments ever conducted: the now-famous Large Hadron Collider, a gigantic particle accelerator capable of re-creating conditions that existed fractions of a second after the Big Bang.A collaboration between one of the youngest professors in the United Kingdom and a distinguished popular physicist, Why Does E=mc2? is one of the most exciting and accessible explanations of the theory of relativity.
show more

Product details

  • Paperback | 272 pages
  • 139 x 202 x 22mm | 294.84g
  • Da Capo Press Inc
  • New York, United Kingdom
  • English
  • Special edition
  • UK ed.
  • 0306819112
  • 9780306819117
  • 28,917

Review quote

"I can think of no one, Stephen Hawking included, who more perfectly combines authority, knowledge, passion, clarity and powers of elucidation than Brian Cox. If you really want to know how Big Science works and why it matters to each of us in the smallest way then be entertained by this dazzlingly enthusiastic man. Can someone this charming really be a professor?" Stephen Fry "(The authors have)blazed a clear trail into forbidding territory, from the mathematical structure of space-time all the way to atom bombs, astrophysics and the origin of mass." The New Scientist "(This book) is clear, sparkling in places, and totally without vanity... anyone with an adventurous mind should be intrigued by what two smart physicists say about (relativity theory) in plain language...[A] delightful little book." The Huffington Post"
show more

About Brian Cox

Brian Cox (Author)
Brian Cox is a distinguished particle physicist and popular TV host who divides his time between Manchester, England, and Geneva, Switzerland.

Jeff Forshaw (Author)
Jeff Forshaw is a professor at the University of Manchester and a recipient of the Institute of Physics Maxwell Medal. He lives in Manchester, England.
show more

Rating details

6,480 ratings
4.01 out of 5 stars
5 34% (2,192)
4 40% (2,598)
3 21% (1,338)
2 4% (269)
1 1% (83)

Our customer reviews

This is a great book on the basic subjects of space and time in relativity, and how the revolutions in these concepts are central to current physics thought. It is told in a narrative style which is highly accessible, and enaging, to readers unfamiliar with the topic. The mathematics involved is complex, but is discussed in a very clear fashion, so even with minimal background, it's basically understandable. The book tackles some weighty issues, which certainly isn't unusual for a theoretical physics book, but one of the key features of this book is that the authors never lose sight of how important it is to confirm theory with experiment. Nor do they forget that the average reader doesn't care about esoteric concepts. They want to know why the theories are important in their lives. The physicists certainly address this concept.show more
by aira bautista
I learnt a lot reading this, and I even think I understood some of it. The first part takes you through the historical background to Einstein's famous equation, starting with Galileo's discovery that all motion is motion relative to something else (there's no absolute motion), then to the even more startling discovery that there's no absolute time, either (no 'big clock in the sky'), and the replacement of separate space and time with 'spacetime'. Spacetime must be curved (because Euclidian geometry won't work) and everything moves at speed through it (when I'm sitting down - not moving in space relative to myself - in one second I've still gone distance 'c' in spacetime). The authors make these strange concepts seem much more credible than I could ever do, and even explain why the concepts are bizarre to us (our conventional ones have been ingrained by natural selection). In the later part, the book looks at the implications of all this: how destroying mass creates a vast amount of energy (in an atom bomb, for instance), how stars burn and how E=mc2 explains other astronomical phenomena like white dwarves, neutron stars and black holes; what the scary-looking Standard Model equation means, and the world of very small elementary particles (which are, yikes, also waves), and how experiments are done nowadays at CERN and elsewhere to get them interacting. Among all this a lot of background gets pretty seamlessly filled in about how science works ('concepts must be testable by experiment'); what equations are for (allow you to predict the result of an experiment without having to conduct it); the mystery of why maths is so good at describing underlying natural phenomena; the importance of causality; and how light itself isn't special (it's just that its photons have zero mass and therefore always go at the universal maximum speed through space). For a reader like me (with long-ago O level Physics), it was fine - you have to know (or learn) that, for instance E=mc�² can become m=E/c�² but that's about it. The book also often tells you the same thing several times - but that's actually helpful, rather than annoying, in a complex subject like this. I've never read such a good popular-science book.show more
by Jonathan Pseud
Book ratings by Goodreads
Goodreads is the world's largest site for readers with over 50 million reviews. We're featuring millions of their reader ratings on our book pages to help you find your new favourite book. Close X