VARIABLE COMPLEJA

VARIABLE COMPLEJA

List price: US$66.72

Currently unavailable

Add to wishlist

AbeBooks may have this title (opens in new window).

Try AbeBooks

Product details

Table of contents

<P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>CONTENIDO<?xml:namespace prefix = &quot;o&quot; ns = &quot;urn:schemas-microsoft-com:office:office&quot; /><o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;><o:p>&nbsp;</o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>CAPITULO 1 NUMEROS COMPLEJOS <SPAN style=&quot;mso-tab-count: 1&quot;></SPAN>1<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;><o:p>&nbsp;</o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>1.1<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>El sistema de los números reales<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>1<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>1.2<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Representación grafica de los números reales<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>1<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>1.3<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>El sistema de números complejos<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>2<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>1.4<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Operaciones fundamentales con números complejos<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>2<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>1.5<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Valor absoluto<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>3<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>1.6<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Fundamentos axiomáticos del sistema de números complejos<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>3<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>1.7<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Representación grafica de los números complejos <SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp; </SPAN>3<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>1.8<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Forma polar de los números complejos<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>4<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>1.9<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Teorema de De Moivre<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>4<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>1.10<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Raíces de números complejos 5<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>1.11<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Formula de Euler<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>5<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>1.12<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Ecuaciones polinómicas<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>5<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>1.13<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Raíces n-esimas de la unidad<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>6<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>1.14<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Interpretación vectorial de los números complejos<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>6<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>1.15<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Proyección estereográfica <SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp;</SPAN>6<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>1.16<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Producto punto y producto cruz <SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp;</SPAN>7<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>1.17<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Coordenadas conjugadas complejas <SPAN style=&quot;mso-tab-count: 1&quot;></SPAN>7<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>1.18<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Conjuntos de puntos <SPAN style=&quot;mso-tab-count: 1&quot;></SPAN>7<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;><o:p>&nbsp;</o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>CAPITULO 2 FUNCIONES, LIMITES Y CONTINUIDAD<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>41<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;><o:p>&nbsp;</o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>2.1<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Variables y funciones<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>41<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>2.2<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Funciones unívocas y funciones multivaluadas<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>41<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>2.3<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Funciones inversas<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>41<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>2.4<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Transformaciones<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>42<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>2.5<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Coordenadas curvilíneas<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>42<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>2.6<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Funciones elementales<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>43<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>2.7<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Puntos de ramificación y líneas de ramificación<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>45<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>2.8<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Superficies de Riemann<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>46<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>2.9<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Límites<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>46 <o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>2.10<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Teoremas sobre límites<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>46<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>2.11<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Infinito<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>47<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>2.12<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Continuidad<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>47<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>2.13<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Teoremas sobre continuidad<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>48<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>2.14<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Continuidad uniforme<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>48<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>2.15<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Sucesiones<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>48<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>2.16<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Limite de una sucesión<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>49<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>2.17<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Teoremas sobre límites de sucesiones<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>49<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>2.18<S
PAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Series infinitas<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>49<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;><o:p>&nbsp;</o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>CAPITULO 3 <o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>DIFERENCIACION COMPLEJA Y ECUACIONES DE CAUCHY-RIEMANN<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>77<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;><o:p>&nbsp;</o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>3.1<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Derivadas<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>77<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>3.2<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Funciones analíticas<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>77<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>3.3<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Ecuaciones de Cauchy-Riemann<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>77<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>3.4<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Funciones armónicas <SPAN style=&quot;mso-tab-count: 1&quot;></SPAN>78<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>3.5<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Interpretación geométrica de la derivada<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>78<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>3.6<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Diferenciales <SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp; </SPAN>79<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>3.7<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Reglas de diferenciación<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>79<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>3.8<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Derivadas de funciones elementales <SPAN style=&quot;mso-tab-count: 1&quot;></SPAN>80<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>3.9<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Derivadas de orden superior <SPAN style=&quot;mso-tab-count: 1&quot;></SPAN>81<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>3.10<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Regia de L’Hopital<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>81<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>3.11<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Puntos singulares <SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp;</SPAN>81<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>3.12<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Familias ortogonales <SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp; </SPAN>82<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>3.13<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Curvas<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>83<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>3.14<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Aplicaciones en geometría y mecánica<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>83<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>3.15<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Operadores diferenciales complejos <SPAN style=&quot;mso-tab-count: 1&quot;></SPAN>84<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>3.16<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Gradiente, divergencia, rotor y laplaciano <SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp;</SPAN>84<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;><o:p>&nbsp;</o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>CAPITULO 4 INTEGRACION COMPLEJA Y TEOREMA DE CAUCHY<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>111<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;><o:p>&nbsp;</o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>4.1<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Integrales complejas de línea<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>111<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>4.2<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Integrales reales de línea<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>112<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>4.3<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Relación entre integrales reales de línea e integrales complejas de línea <SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp;</SPAN>112<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>4.4<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Propiedades de las integrales<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>112<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>4.5<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Cambio de variables <SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp;</SPAN>113<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>4.6<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Regiones simplemente y múltiplemente conexas<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>113<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>4.7<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Teorema de la curva de Jordan<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>114<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>4.8<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Convención respecto de la orientación de una trayectoria cerrada<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>114<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>4.9<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Teorema de Green en el piano<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>114 <SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp; </SPAN><o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>4.10<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Forma compleja del teorema de Green<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>114<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>4.11<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Teorema de Cauchy. El teorema de Cauchy-Goursat<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>115 <SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp; </SPAN><o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>4.12<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Teorema de Morera<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>115<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>4.13<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Integrales indefinidas<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>115<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>4.14<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Integrales de funciones especiales<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>115<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>4.15<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Algunas consecuencias del teorema de Cauchy<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>117<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN><o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;><o:p>&nbsp;</o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>CAPITULO 5 FORMULAS INTEGRALES DE CAUCHY Y TEOREMAS RELACIONADOS <SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp;</SPAN>144<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;><o:p>&nbsp;</o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>5.1<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Formulas integrales de Cauchy<SP
AN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>144<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>5.2<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Algunos teoremas importantes<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>145<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;><o:p>&nbsp;</o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>CAPITULO 6 SERIES INFINITAS, SERIES DE TAYLOR Y SERIES DE LAURENT<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>169<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;><o:p>&nbsp;</o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>6.1<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Sucesiones de funciones<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>169 <SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN><o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>6.2<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Series de funciones<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>169 <SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN><o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>6.3<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Convergencia absoluta<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>170<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>6.4<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Convergencia uniforme de sucesiones y de series<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>170 <SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN><o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>6.5<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Serie de potencias<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>170<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>6.6<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Algunos teoremas importantes<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>171 <SPAN style=&quot;mso-tab-count: 1&quot;></SPAN><o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>6.7<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Teorema de Taylor<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>173<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>6.8<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Algunas series especiales<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>173 <SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN><o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>6.9<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Teorema de Laurent <SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp; </SPAN>174<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>6.10<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Clasificación de las singularidades<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>175<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>6.11<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Funciones enteras<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>176<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>6.12<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Funciones meromórficas<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>176 <SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN><o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>6.13<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Desarrollo de Lagrange<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>176<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>6.14<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Continuación analítica<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>176 <SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp; </SPAN><o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;><o:p>&nbsp;</o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>CAPITULO 7 EL TEOREMA DEL RESIDUO, CALCULO DE INTEGRALES Y SERIES<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>205<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;><o:p>&nbsp;</o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>7.1<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Residuos <SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp;</SPAN>205<SPAN style=&quot;mso-tab-count: 1&quot;> </SPAN><o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>7.2<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Calculo de residuos<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>205<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>7.3<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>El teorema del residuo <SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp;</SPAN>206<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp; </SPAN><o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>7.4<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Calculo de integrales definidas<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>207 <SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN><o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>7.5<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Teoremas especiales para calcular integrales <SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp;</SPAN>207<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp; </SPAN><o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>7.6<SPAN style=&quot;mso-tab-count: 1&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>El valor principal de Cauchy para integrales <SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp;</SPAN>208<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>7.7<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Diferenciación bajo el signo de integración. Regia de Leibniz <SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp;</SPAN>208<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>7.8<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Suma de series <SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp;</SPAN>209<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>7.9<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Teorema del desarrollo de Mittag-Leffler<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>209<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>7.10<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Algunos desarrollos especiales <SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp;</SPAN>209<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;><o:p>&nbsp;</o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>CAPÍTULO 8 APLICACIÓN CONFORME<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>242<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;><o:p>&nbsp;</o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>8.1<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Transformaciones o aplicaciones <SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp;</SPAN>242<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>8.2<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Jacobiano de una transformación<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>242<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>8.3<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Funciones de aplicaciones complejas<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>243<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>8.4<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Aplicaciones conformes <SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp;</SPAN>243<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>8.5<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Teorema de la aplicación de Riemann <SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp;</SPAN>243<o:p></o:p></SPAN></P><P cl
ass=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>8.6<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Puntos fijos o invariantes de una transformación <SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp;</SPAN>244<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>8.7<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Algunas transformaciones generales<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>244<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>8.8<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp;&nbsp; </SPAN><SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp;&nbsp;&nbsp;&nbsp;</SPAN>Transformaciones sucesivas<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp; </SPAN>245<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>8.9<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Transformación lineal <SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp;</SPAN>245<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>8.10<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Transformación bilineal o fraccionaria <SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp;</SPAN>245<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>8.11<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Aplicación de un semiplano sobre un circulo <SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp;</SPAN>246<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>8.12<SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Transformación de Schwarz-Christoffel <SPAN style=&quot;mso-spacerun: yes&quot;>&nbsp;</SPAN>246<o:p></o:p></SPAN></P><P class=MsoNormal style=&quot;MARGIN: 0cm 0cm 0pt&quot;><SPAN style=&quot;mso-ansi-language: ES-MX&quot;>8.13<SPAN styl
show more

Review Text

Este libro está pensado para que sirva como complemento de todos los libros de texto comunes en un curso formal sobre la teoría de variable compleja y sus aplicaciones.

También debe ser de considerable valor para aquellas personas en un curso de aerodinámica, elasticidad, física, matemáticas, y otras muchas áreas de las ciencias y la ingeniería.

En este libro se incluyó considerablemente más material del que se cubre en la mayoría de los cursos iniciales con objeto de hacer el libro más flexible, útil y de estimular el interés en los diferentes temas.
show more