A User-Friendly Introduction to Lebesgue Measure and Integration

A User-Friendly Introduction to Lebesgue Measure and Integration

1 (1 rating by Goodreads)
By (author) 

List price: US$49.00

Currently unavailable

We can notify you when this item is back in stock

Add to wishlist

AbeBooks may have this title (opens in new window).

Try AbeBooks

Description

A User-Friendly Introduction to Lebesgue Measure and Integration provides a bridge between an undergraduate course in Real Analysis and a first graduate-level course in Measure Theory and Integration. The main goal of this book is to prepare students for what they may encounter in graduate school, but will be useful for many beginning graduate students as well. The book starts with the fundamentals of measure theory that are gently approached through the very concrete example of Lebesgue measure. With this approach, Lebesgue integration becomes a natural extension of Riemann integration.

Next, $L^p$-spaces are defined. Then the book turns to a discussion of limits, the basic idea covered in a first analysis course. The book also discusses in detail such questions as: When does a sequence of Lebesgue integrable functions converge to a Lebesgue integrable function? What does that say about the sequence of integrals? Another core idea from a first analysis course is completeness. Are these $L^p$-spaces complete? What exactly does that mean in this setting?

This book concludes with a brief overview of General Measures. An appendix contains suggested projects suitable for end-of-course papers or presentations.

The book is written in a very reader-friendly manner, which makes it appropriate for students of varying degrees of preparation, and the only prerequisite is an undergraduate course in Real Analysis.
show more

Product details

  • Paperback | 221 pages
  • 140 x 216 x 12.7mm | 272.16g
  • Providence, United States
  • English
  • 1470421992
  • 9781470421991
  • 878,239

Table of contents

Review of Riemann integration
Lebesgue measure
Lebesgue integration $L^p$ spaces
General measure theory
Ideas for projects
References
Index
show more

About Gail S. Nelson

Gail S. Nelson, Carleton College, Northfield, MN, USA.
show more

Rating details

1 rating
1 out of 5 stars
5 0% (0)
4 0% (0)
3 0% (0)
2 0% (0)
1 100% (1)
Book ratings by Goodreads
Goodreads is the world's largest site for readers with over 50 million reviews. We're featuring millions of their reader ratings on our book pages to help you find your new favourite book. Close X