Time Series Analysis and Its Applications
32%
off

Time Series Analysis and Its Applications : With R Examples

3.76 (43 ratings by Goodreads)
By (author)  , By (author) 

Free delivery worldwide

Available. Dispatched from the UK in 3 business days
When will my order arrive?

Description

The fourth edition of this popular graduate textbook, like its predecessors, presents a balanced and comprehensive treatment of both time and frequency domain methods with accompanying theory. Numerous examples using nontrivial data illustrate solutions to problems such as discovering natural and anthropogenic climate change, evaluating pain perception experiments using functional magnetic resonance imaging, and monitoring a nuclear test ban treaty.

The book is designed as a textbook for graduate level students in the physical, biological, and social sciences and as a graduate level text in statistics. Some parts may also serve as an undergraduate introductory course. Theory and methodology are separated to allow presentations on different levels. In addition to coverage of classical methods of time series regression, ARIMA models, spectral analysis and state-space models, the text includes modern developments including categorical time series analysis, multivariate spectral methods, long memory series, nonlinear models, resampling techniques, GARCH models, ARMAX models, stochastic volatility, wavelets, and Markov chain Monte Carlo integration methods.



This edition includes R code for each numerical example in addition to Appendix R, which provides a reference for the data sets and R scripts used in the text in addition to a tutorial on basic R commands and R time series. An additional file is available on the book's website for download, making all the data sets and scripts easy to load into R.
show more

Product details

  • Paperback | 562 pages
  • 178 x 254 x 29.72mm | 1,464g
  • Cham, Switzerland
  • English
  • Revised
  • 4th ed. 2017
  • 66 Tables, color; 70 Illustrations, color; 78 Illustrations, black and white; XIII, 562 p. 148 illus., 70 illus. in color.
  • 3319524518
  • 9783319524511
  • 480,172

Back cover copy

The fourth edition of this popular graduate textbook, like its predecessors, presents a balanced and comprehensive treatment of both time and frequency domain methods with accompanying theory. Numerous examples using nontrivial data illustrate solutions to problems such as discovering natural and anthropogenic climate change, evaluating pain perception experiments using functional magnetic resonance imaging, and monitoring a nuclear test ban treaty.

The book is designed as a textbook for graduate level students in the physical, biological, and social sciences and as a graduate level text in statistics. Some parts may also serve as an undergraduate introductory course. Theory and methodology are separated to allow presentations on different levels. In addition to coverage of classical methods of time series regression, ARIMA models, spectral analysis and state-space models, the text includes modern developments including categorical time series analysis, multivariate spectral methods, long memory series, nonlinear models, resampling techniques, GARCH models, ARMAX models, stochastic volatility, wavelets, and Markov chain Monte Carlo integration methods.



This edition includes R code for each numerical example in addition to Appendix R, which provides a reference for the data sets and R scripts used in the text in addition to a tutorial on basic R commands and R time series. An additional file is available on the book's website for download, making all the data sets and scripts easy to load into R.

Student-tested and improvedAccessible and complete treatment of modern time series analysisPromotes understanding of theoretical concepts by bringing them into a more practical context
Comprehensive appendices covering the necessities of understanding the mathematics of time series analysis
Instructor's Manual available for adopters

New to this edition:

Introductions to each chapter replaced with one-page abstractsAll graphics and plots redone and made uniform in styleBayesian section completely rewritten, covering linear Gaussian state space models onlyR code for each example provided directly in the text for ease of data analysis replication
Expanded appendices with tutorials containing basic R and R time series commandsData sets and additional R scripts available for download on Springer.comInternal online links to every reference (equations, examples, chapters, etc.)
show more

Review Text

"The authors have to be congratulated for their ability to describe in a book of less than 600 pages such a variety of topics and methods, together with scripts allowing the reproduction of the results, for so many real examples. It is a valuable contribution with a strong statistical orientation and a carefully designed pleasant typography." (Anna Bartkowiak, ISCB News, iscb.info, Issue 65, June, 2018)

"The chapters are nicely structured, well presented and motivated. ... it provides sufficient exercise questions making it easier for adoption as a graduate textbook. The book will be equally attractive to graduate students, practitioners, and researchers in the respective fields. ... The book contributes stimulating and substantial knowledge for time series analysis for the benefit of a host of community and exhibits the use and practicality of the fabulous subject statistics." (S. Ejaz Ahmed, Technometrics, Vol. 59 (4), November, 2017)
show more

Review quote

"The authors have to be congratulated for their ability to describe in a book of less than 600 pages such a variety of topics and methods, together with scripts allowing the reproduction of the results, for so many real examples. It is a valuable contribution with a strong statistical orientation and a carefully designed pleasant typography." (Anna Bartkowiak, ISCB News, iscb.info, Issue 65, June, 2018)





"The chapters are nicely structured, well presented and motivated. ... it provides sufficient exercise questions making it easier for adoption as a graduate textbook. The book will be equally attractive to graduate students, practitioners, and researchers in the respective fields. ... The book contributes stimulating and substantial knowledge for time series analysis for the benefit of a host of community and exhibits the use and practicality of the fabulous subject statistics." (S. Ejaz Ahmed, Technometrics, Vol. 59 (4), November, 2017)
show more

About Robert H. Shumway

Robert H. Shumway, PhD, is Professor Emeritus of Statistics at the University of California, Davis. He is a Fellow of the American Statistical Association and a member of the International Statistical Institute. He won the 1986 American Statistical Association Award for Outstanding Statistical Application and the 1992 Communicable Diseases Center Statistics Award; both awards were for joint papers on time series applications. He is also the author of a Prentice-Hall text on applied time series analysis and served as a Departmental Editor for the Journal of Forecasting and Associate Editor for the Journal of the American Statistical Association.

David S. Stoffer, PhD, is Professor of Statistics at the University of Pittsburgh. He is a Fellow of the American Statistical Association and has made seminal contributions to the analysis of categorical time series. David won the 1989 American Statistical Association Award for Outstanding Statistical Application in a joint paper analyzing categorical time series arising in infant sleep-state cycling. He is currently a Departmental Editor of the Journal of Forecasting and an Associate Editor of the Annals of Statistical Mathematics. He has served as Program Director in the Division of Mathematical Sciences at the National Science Foundation and as Associate Editor for the Journal of the American Statistical Association.
show more

Rating details

43 ratings
3.76 out of 5 stars
5 23% (10)
4 44% (19)
3 23% (10)
2 5% (2)
1 5% (2)
Book ratings by Goodreads
Goodreads is the world's largest site for readers with over 50 million reviews. We're featuring millions of their reader ratings on our book pages to help you find your new favourite book. Close X