Theory of Heart

Theory of Heart : Biomechanics, Biophysics, and Nonlinear Dynamics of Cardiac Function : Conference : Papers

3 (1 rating by Goodreads)
Edited by  , Edited by  , Edited by 

List price: US$99.00

Currently unavailable

We can notify you when this item is back in stock

Add to wishlist

AbeBooks may have this title (opens in new window).

Try AbeBooks


In recent years there has been a growth in interest in studying the heart from the perspective of the physical sciences: mechanics, fluid flow, electromechanics. This volume is the result of a workshop held in July 1989 at the Institute for Nonlinear Sciences at the University of California at San Diego that brought together scientists and clinicians with graduate students and postdoctoral fellows who shared an interest in the heart. The chapters were prepared by the invited speakers as didactic reviews of their subjects but also include the structure, mechanical properties, and function of the heart and the myocardium, electrical activity of the heart and myocardium, and mathematical models of heart function.
show more

Product details

  • Hardback | 628 pages
  • 165.1 x 247.65 x 31.75mm | 1,059.59g
  • New York, NY, United States
  • English
  • 1991 ed.
  • 0387974830
  • 9780387974835

Table of contents

1 Structure and Function of the Diastolic Heart.- 1.1 Introduction.- 1.2 The Microstructure of the Heart.- 1.3 Mechanical Properties of Myocardium.- 1.4 Concluding Remarks.- References.- 2 Structural Considerations in Formulating Material Laws for the Myocardium.- 2.1 Introduction.- 2.2 Structural Background.- 2.3 Formulation of Stress-Strain Relations.- 2.4 Simulation of a Ventricular Wall Segment Subjected to Various Loading Conditions.- 2.5 Discussion.- References.- 3 Toward a Stress Analysis in the Heart.- 3.1 Introduction.- 3.2 Quantifying Material Properties.- 3.3 Characteristics of Cardiac Tissue.- 3.4 A Myocardial Constitutive Determination.- 3.5 Stress Analysis.- 3.6 Conclusions.- References.- 4 Identification of the Time-Varying Properties of the Heart.- 4.1 Introduction.- 4.2 Theory.- 4.3 Apparatus.- 4.4 Method.- 4.5 Results.- 4.6 Discussion.- References.- 5 Factors Affecting the Regional Mechanics of the Diastolic Heart.- 5.1 Introduction.- 5.2 The Left Ventricular Pressure-Volume Relation.- 5.3 Regional Ventricular Function.- References.- 6 Finite Element Modeling of Ventricular Mechanics.- 6.1 Introduction.- 6.2 The Finite Element Method.- 6.3 An Axisymmetric Finite Element Model of the Passive Left Ventricle.- References.- 7 Multidimensional Measurement of Regional Strains in the Intact Heart.- 7.1 Introduction.- 7.2 Strain Analysis.- 7.3 Finite Strains in the Normal Heart.- 7.4 Abnormal Finite Strains: Ventricular Pacing and Acute Ischemia.- References.- 8 Epicardial Deformation From Coronary Cinéangiograms.- 8.1 Introduction.- 8.2 Data Acquisition.- 8.3 Static Surface Estimation.- 8.4 Motion from Bifurcations.- 8.5 Motion from Vessels.- 8.6 Discussion.- References.- 9 Functional Consequences of Regional Heterogeneity in the Left Ventricle.- 9.1 Left Ventricular Heterogeneity Under Physiologic Conditions.- 9.2 Potential Mechanisms for Regional Heterogeneity in Deformation.- 9.3 Functional Consequences of Regional Heterogeneity.- 9.4 Theoretical Models of Regional Heterogeneity.- References.- 10 Mathematical Modeling of the Electrical Activity of Cardiac Cells.- 10.1 Introduction.- 10.2 Ionic Models Using the Hodgkin-Huxley Formulation.- 10.3 Background Currents.- 10.4 Activation.- 10.5 Inactivation.- 10.6 Pump and Exchange Currents.- 10.7 Applications of Ionic Models.- 10.8 Reduced Ionic Models.- 10.9 Single Channel Models.- 10.10 Single Channel Dynamics: Stochastic or Deterministic?.- References.- 11 Mathematical Models of Pacemaker Tissue in the Heart.- 11.1 Introduction.- 11.2 Modeling Aspects.- 11.3 The Bullfrog Sinus Venosus Pacemaker Cell.- 11.4 The Bullfrog Atrial Cell.- 11.5 The ACh-Sensitive K+ Current IK,ACh.- 11.6 Parasympathetic Control of the Rabbit SA Node Cell.- 11.7 Rabbit Atrial Cell Model.- 11.8 Modeling Nodal Regions.- 11.9 Summary.- References.- 12 Low-Dimensional Dynamics in the Heart.- 12.1 Introduction.- 12.2 Basic Concepts in Nonlinear Dynamics.- 12.3 A Topological Model of Cardiac Oscillators.- 12.4 Periodic Stimulation of Limit Cycle Oscillators.- 12.5 Stimulation of the Poincaré Oscillator at a Fixed Delay after an Action Potential.- 12.6 Periodic Stimulation of Excitable, Nonoscillating Cardiac Tissue.- 12.7 Applications and Limitations.- References.- 13 Iteration of the Human Atrioventricular (AV) Nodal Recovery Curve Predicts Many Rhythms of AV Block.- 13.1 Introduction.- 13.2 Derivation of the 1-Dimensional Map.- 13.3 Results of Iteration of the Map.- 13.4 Comparison with Clinical and Experimental Findings.- 13.5 Appendix.- References.- 14 Ionic Basis of the Wenckebach Phenomenon.- 14.1 Introduction.- 14.2 AV Nodal Wenckebach.- 14.3 Wenckebach in the Sucrose Gap.- 14.4 Wenckebach in the Ventricular Myocyte.- 14.5 Simulating Wenckebach in the Beeler and Reuter Model.- 14.6 The Recovery Curve.- 14.7 Ionic Mechanisms of Wenckebach Periodicity.- 14.8 Analytical Model of Wenckebach Periodicity.- 14.9 Conclusion.- References.- 15 Parasystole and the Pacemaker Problem.- 15.1 Introduc
show more

About Leon Glass

Growing interest in studying the heart from the physical point of view led to a workshop held at the University of California in San Diego. Topics covered include the structure, mechanical properties and electrical activity of the heart and myocardium, and mathematical models of heart function.
show more

Rating details

1 rating
3 out of 5 stars
5 0% (0)
4 0% (0)
3 100% (1)
2 0% (0)
1 0% (0)
Book ratings by Goodreads
Goodreads is the world's largest site for readers with over 50 million reviews. We're featuring millions of their reader ratings on our book pages to help you find your new favourite book. Close X