Symmetric and G-algebras

Symmetric and G-algebras : With Applications to Group Representations

By (author) 

List price: US$129.00

Currently unavailable

We can notify you when this item is back in stock

Add to wishlist

AbeBooks may have this title (opens in new window).

Try AbeBooks

Description

The theory of symmetric and G-algebras has experienced a rapid growth in the last ten to fifteen years, acquiring mathematical depth and significance and leading to new insights in group representation theory. This volume provides a systematic account of the theory together with a number of applicat
show more

Product details

  • Hardback | 384 pages
  • 165 x 245 x 26mm | 821g
  • Dordrecht, Netherlands
  • English
  • 1990 ed.
  • 384 p.
  • 0792307615
  • 9780792307617

Table of contents

1. Preliminaries.- 1. Notation and terminology.- 2. Artinian, noetherian and semisimple modules.- 3. Semisimple modules.- 4. The radical and socle of modules and rings.- 5. The Krull-Schmidt theorem.- 6. Matrix rings.- 7. The Wedderburn-Artin theorem.- 8. Tensor products.- 9. Croup algebras.- 2. Frobenius and symmetric algebras.- 1. Definitions and elementary properties.- 2. Frobenius crossed products.- 3. Symmetric crossed products.- 4. Symmetric endomorphism algebras.- 5. Projective covers and injective hulls.- 6. Classical results.- 7. Frobenius uniserial algebras.- 8. Characterizations of Frobenius algebras.- 9. Characters of symmetric algebras.- 10. Applications to projective modular representations.- 11. Kulshammer's theorems.- 12. Applications.- 3. Symmetric local algebras.- 1. Symmetric local algebras A with dimFZ(A) ? 4.- 2. Some technical lemmas.- 3. Symmetric local algebras A with dimFZ(A) = 5.- 4. Applications to modular representations.- 4. G-algebras and their applications.- 1. The trace map.- 2. Permutation G-algebras.- 3. Algebras over complete noetherian local rings.- 4. Defect groups in G-algebras.- 5. Relative projective and injective modules.- 6. Vertices as defect groups.- 7. The G-algebra EndR((1H)G).- 8. An application: The Robinson's theorem.- 9. The Brauer morphism.- 10. Points and pointed groups.- 11. Interior G-algebras.- 12. Bilinear forms on G-algebras.
show more