# Structural Concrete : Theory and Design

List price: US$154.99

Currently unavailable

## Description

For a two-course sequence in concrete design for upper-level engineering students.

Revised to adhere to the latest American Concrete Institute (ACI) Code requirements for the design of structural concrete, this comprehensive textbook fills the gap between industrial and educational requirements by helping students understand the practical aspects of the modern design of concrete structures. Presenting the analysis and design of both reinforced and prestressed concrete elements, Structural Concrete is exceptionally logical and easy to read.

show more

Revised to adhere to the latest American Concrete Institute (ACI) Code requirements for the design of structural concrete, this comprehensive textbook fills the gap between industrial and educational requirements by helping students understand the practical aspects of the modern design of concrete structures. Presenting the analysis and design of both reinforced and prestressed concrete elements, Structural Concrete is exceptionally logical and easy to read.

show more

## Product details

- Paperback | 772 pages
- 205.7 x 251.5 x 25.4mm | 1,632.95g
- 16 Jul 2001
- Pearson Education (US)
- Pearson
- United States
- English
- 2nd edition
- 0130421715
- 9780130421715

## Table of contents

Preface to the First Edition.

Preface to the Second Edition.

Notation.

Conversion Factors.

1. Introduction.

Structural Concrete. Historical Background. Advantages and Disadvantages of Reinforced Concrete. Codes of Practice. Design Philosophy and Concepts. Units of Measurement. Loads. Safety Provisions. Structural Concrete Elements. Structural Concrete Design. Accuracy of Calculations. Concrete High-Rise Buildings.

2. Properties of Reinforced Concrete.

Factors Affecting the Strength of Concrete. Compressive Strength. Stress-Strain Curves of Concrete. Tensile Strength of Concrete. Flexural Strength (Modulus of Rupture) of Concrete. Shear Strength. Modulus of Elasticity of Concrete. Poisson's Ratio. Shear Modulus. Modular Ratio. Volume Changes of Concrete. Creep. Unit Weight of Concrete. Fire Resistance. High-Performance Concrete. Lightweight Concrete. Fibrous Concrete. Steel Reinforcement.

3 Strength Design Method: Flexural Analysis of Reinforced Concrete Beams.

Introduction. Assumptions. Behavior of Simply Supported Reinforced Concrete Beam Loaded to Failure. Types of Flexural Failure. Load Factors. Capacity-Reduction Factor. Significance of Analysis and Design Expressions. Equivalent Compressive Stress Distribution. Singly Reinforced Rectangular Section in Bending. Adequacy of Sections. Minimum Percentage of Steel. Bundled Bars. Rectangular Sections with Compression Reinforcement. Analysis of T and I-Sections. Dimensions of Isolated T -Shaped Sections. Inverted L-Shaped Sections. Sections of Other Shapes. More Than One Row of Steel Bars in the Section. Analysis of Sections Using Tables. Additional Examples. Examples Using SI Units.

4 Strength Design Method: Flexural Design of Reinforced Concrete Beams.

Introduction. Rectangular Sections with Tension Reinforcement Only. Spacing of Reinforcement and Concrete Cover. Rectangular Sections with Compression Reinforcement. Design of T -Sections. Additional Examples. Examples Using SI Units.

5 Elastic Concept: Flexural Analysis of Beams.

Assumptions. Transformed Area Concept. Cracking Moment. Rectangular Sections in Bending with Tension Reinforcement. Rectangular Sections with Compression Reinforcement. Analysis of T -Sections. Nonrectangular Sections in Bending.

6 Deflection and Control of Cracking.

Deflection of Structural Concrete Members. Long-Time Deflection. Allowable Deflection. Deflection Due to Combinations of Loads. Cracks in Flexural Members. ACI Code Requirements.

7 Development Length of Reinforcing Bars.

Introduction. Development of Bond Stresses. Development Length in Tension. Development Length in Compression. Summary of the Computation of Id in Tension. Critical Sections in Flexural Members. Standard Hooks (ACI Code, Sections 12.5 and 7.1). Splices of Reinforcement. Moment-Resistance Diagram (Bar Cutoff Points).

8 Shear and Diagonal Tension.

Introduction. Shear Stresses in Concrete Beams. Behavior of Beams Without Shear Reinforcement. Moment Effect on Shear Strength. Beams with Shear Reinforcement. ACI Code Shear Design Requirements. Design of Vertical Stirrups. Design Summary. Shear Force Due to Live Loads. Shear Stresses in Members of Variable Depth. Deep Flexural Members. Examples Using SI Units.

9 One Way Slabs.

Types of Slabs. Design of One-Way Solid Slabs. Design Limitations According to the ACI Code. Temperature and Shrinkage Reinforcement. Reinforcement Details. Distribution of Loads from One-Way Slabs to Supporting Beams. One-Way Joist Floor System.

10 Axially Loaded Columns.

Introduction. Types of Columns. Behavior of Axially Loaded Columns. ACI Code Limitations. Spiral Reinforcement. Design Equations. Axial Tension. Long Columns.

11 Members in Compression and Bending.

Introduction. Design Assumption for Columns. Load-Moment Interaction Diagram. Safety Provisions. Balanced Condition-Rectangular Sections. Columns Sections Under Eccentric Loading. Strength of Columns When Tension Controls. Strength of Columns When Compression Controls. Interaction Diagram Example. Rectangular Columns with Side Bars. Load Capacity of Circular Columns. Analysis and Design of Columns Using Charts. Design of Columns Under Eccentric Loading. Biaxial Bending. Circular Columns with Uniform Reinforcement Under Biaxial Bending. Square and Rectangular Columns Under Biaxial Bending. Parme Load Contour Method. Equation of Failure Surface. SI Examples.

12 Slender Columns.

Introduction. Effective Column Length (Klu). Effective Length Factor (K). Member Stiffness (EI). Limitation of the Slenderness Ratio (Klu/r). Moment-Magnifier Design Method.

13 Footings.

Introduction. Types of Footings. Distribution of Soil Pressure. Design Considerations. Plain Concrete Footings. Combined Footings. Footings Under Eccentric Column Loads. Footings Under Biaxial Moment. Slabs on Ground. Footings on Piles. SI Equations.

14 Retaining Walls.

Introduction. Types of Retaining Walls. Forces on Retaining Walls. Active and Passive Soil Pressures. Effect of Surcharge. Friction on the Retaining Wall Base. Stability Against Overturning. Proportions of Retaining Walls. Design Requirements. Drainage. Basement Walls.

15 Design for Torsion.

Introduction. Torsional Moments in Beams. Torsional Stresses. Torsional Moment in Rectangular Sections. Combined Shear and Torsion. Torsion Theories for Concrete Members. Torsional Strength of Plain Concrete Members. Torsion in Reinforced Concrete Members (ACI Code Procedure). Summary of ACI Code Procedures.

16 Continuous Beams and Frames.

Introduction. Maximum Moments in Continuous Beams. Building Frames. Portal Frames. General Frames. Design of Frame Hinges. Introduction to Limit Design. The Collapse Mechanism. Principles of Limit Design. Upper and Lower Bounds of Load Factors. Limit Analysis. Rotation of Plastic Hinges. Summary of Limit Design Procedure. Moment Redistribution.

17 Design of Two-Way Slabs.

Introduction. Types of Two-Way Slabs. Economical Choice of Concrete Floor Systems. Design Concepts. Column and Middle Strips. Minimum Slab Thickness to Control Deflection. Shear Strength of Slabs. Analysis of Two Way Slabs by the Direct Design Method. Design Moments in Columns. Transfer of Unbalanced Moments to Columns. Waffle Slabs. Equivalent Frame Method.

18 Stairs.

Introduction. Types of Stairs. Examples.

19 Beams Curved in Plan.

Introduction. Uniformly Loaded Circular Beams. Semicircular Beam Fixed at End Supports. Fixed-End Semicircular Beam Under Uniform Loading. Circular Beam Subjected to Uniform Loading. Circular Beam Subjected to a Concentrated Load at Midspan. V-Shaped Beams Subjected to Uniform Loading. V-Shaped Beams Subjected to a Concentrated Load at the Centerline of the Beam.

20 Introduction to Prestressed Concrete.

Prestressed Concrete. Materials and Allowable Stresses. Loss of Prestress. Elastic Analysis of Flexural Members. Strength Design of Flexural Members. Cracking Moment. Deflection. Design for Shear. Preliminary Design of Prestressed Concrete Flexural Members. End-Block Stresses.

21 Computer Programs and Flowcharts.

Introduction. Computer Programs. Flowcharts.

22 Unified Design Method.

Introduction. Definitions. Strength-Reduction Factor. Moment Redistribution of Negative Moments in Continuous Flexural Members. Design of Concrete Sections by the Unified Design Method.

Appendix A: Design Tables (Customary Units).

Appendix B: Design Tables (SI Units).

Appendix C: Structural AIDS.

Answers to Selected Problems.

Index.

show more

Preface to the Second Edition.

Notation.

Conversion Factors.

1. Introduction.

Structural Concrete. Historical Background. Advantages and Disadvantages of Reinforced Concrete. Codes of Practice. Design Philosophy and Concepts. Units of Measurement. Loads. Safety Provisions. Structural Concrete Elements. Structural Concrete Design. Accuracy of Calculations. Concrete High-Rise Buildings.

2. Properties of Reinforced Concrete.

Factors Affecting the Strength of Concrete. Compressive Strength. Stress-Strain Curves of Concrete. Tensile Strength of Concrete. Flexural Strength (Modulus of Rupture) of Concrete. Shear Strength. Modulus of Elasticity of Concrete. Poisson's Ratio. Shear Modulus. Modular Ratio. Volume Changes of Concrete. Creep. Unit Weight of Concrete. Fire Resistance. High-Performance Concrete. Lightweight Concrete. Fibrous Concrete. Steel Reinforcement.

3 Strength Design Method: Flexural Analysis of Reinforced Concrete Beams.

Introduction. Assumptions. Behavior of Simply Supported Reinforced Concrete Beam Loaded to Failure. Types of Flexural Failure. Load Factors. Capacity-Reduction Factor. Significance of Analysis and Design Expressions. Equivalent Compressive Stress Distribution. Singly Reinforced Rectangular Section in Bending. Adequacy of Sections. Minimum Percentage of Steel. Bundled Bars. Rectangular Sections with Compression Reinforcement. Analysis of T and I-Sections. Dimensions of Isolated T -Shaped Sections. Inverted L-Shaped Sections. Sections of Other Shapes. More Than One Row of Steel Bars in the Section. Analysis of Sections Using Tables. Additional Examples. Examples Using SI Units.

4 Strength Design Method: Flexural Design of Reinforced Concrete Beams.

Introduction. Rectangular Sections with Tension Reinforcement Only. Spacing of Reinforcement and Concrete Cover. Rectangular Sections with Compression Reinforcement. Design of T -Sections. Additional Examples. Examples Using SI Units.

5 Elastic Concept: Flexural Analysis of Beams.

Assumptions. Transformed Area Concept. Cracking Moment. Rectangular Sections in Bending with Tension Reinforcement. Rectangular Sections with Compression Reinforcement. Analysis of T -Sections. Nonrectangular Sections in Bending.

6 Deflection and Control of Cracking.

Deflection of Structural Concrete Members. Long-Time Deflection. Allowable Deflection. Deflection Due to Combinations of Loads. Cracks in Flexural Members. ACI Code Requirements.

7 Development Length of Reinforcing Bars.

Introduction. Development of Bond Stresses. Development Length in Tension. Development Length in Compression. Summary of the Computation of Id in Tension. Critical Sections in Flexural Members. Standard Hooks (ACI Code, Sections 12.5 and 7.1). Splices of Reinforcement. Moment-Resistance Diagram (Bar Cutoff Points).

8 Shear and Diagonal Tension.

Introduction. Shear Stresses in Concrete Beams. Behavior of Beams Without Shear Reinforcement. Moment Effect on Shear Strength. Beams with Shear Reinforcement. ACI Code Shear Design Requirements. Design of Vertical Stirrups. Design Summary. Shear Force Due to Live Loads. Shear Stresses in Members of Variable Depth. Deep Flexural Members. Examples Using SI Units.

9 One Way Slabs.

Types of Slabs. Design of One-Way Solid Slabs. Design Limitations According to the ACI Code. Temperature and Shrinkage Reinforcement. Reinforcement Details. Distribution of Loads from One-Way Slabs to Supporting Beams. One-Way Joist Floor System.

10 Axially Loaded Columns.

Introduction. Types of Columns. Behavior of Axially Loaded Columns. ACI Code Limitations. Spiral Reinforcement. Design Equations. Axial Tension. Long Columns.

11 Members in Compression and Bending.

Introduction. Design Assumption for Columns. Load-Moment Interaction Diagram. Safety Provisions. Balanced Condition-Rectangular Sections. Columns Sections Under Eccentric Loading. Strength of Columns When Tension Controls. Strength of Columns When Compression Controls. Interaction Diagram Example. Rectangular Columns with Side Bars. Load Capacity of Circular Columns. Analysis and Design of Columns Using Charts. Design of Columns Under Eccentric Loading. Biaxial Bending. Circular Columns with Uniform Reinforcement Under Biaxial Bending. Square and Rectangular Columns Under Biaxial Bending. Parme Load Contour Method. Equation of Failure Surface. SI Examples.

12 Slender Columns.

Introduction. Effective Column Length (Klu). Effective Length Factor (K). Member Stiffness (EI). Limitation of the Slenderness Ratio (Klu/r). Moment-Magnifier Design Method.

13 Footings.

Introduction. Types of Footings. Distribution of Soil Pressure. Design Considerations. Plain Concrete Footings. Combined Footings. Footings Under Eccentric Column Loads. Footings Under Biaxial Moment. Slabs on Ground. Footings on Piles. SI Equations.

14 Retaining Walls.

Introduction. Types of Retaining Walls. Forces on Retaining Walls. Active and Passive Soil Pressures. Effect of Surcharge. Friction on the Retaining Wall Base. Stability Against Overturning. Proportions of Retaining Walls. Design Requirements. Drainage. Basement Walls.

15 Design for Torsion.

Introduction. Torsional Moments in Beams. Torsional Stresses. Torsional Moment in Rectangular Sections. Combined Shear and Torsion. Torsion Theories for Concrete Members. Torsional Strength of Plain Concrete Members. Torsion in Reinforced Concrete Members (ACI Code Procedure). Summary of ACI Code Procedures.

16 Continuous Beams and Frames.

Introduction. Maximum Moments in Continuous Beams. Building Frames. Portal Frames. General Frames. Design of Frame Hinges. Introduction to Limit Design. The Collapse Mechanism. Principles of Limit Design. Upper and Lower Bounds of Load Factors. Limit Analysis. Rotation of Plastic Hinges. Summary of Limit Design Procedure. Moment Redistribution.

17 Design of Two-Way Slabs.

Introduction. Types of Two-Way Slabs. Economical Choice of Concrete Floor Systems. Design Concepts. Column and Middle Strips. Minimum Slab Thickness to Control Deflection. Shear Strength of Slabs. Analysis of Two Way Slabs by the Direct Design Method. Design Moments in Columns. Transfer of Unbalanced Moments to Columns. Waffle Slabs. Equivalent Frame Method.

18 Stairs.

Introduction. Types of Stairs. Examples.

19 Beams Curved in Plan.

Introduction. Uniformly Loaded Circular Beams. Semicircular Beam Fixed at End Supports. Fixed-End Semicircular Beam Under Uniform Loading. Circular Beam Subjected to Uniform Loading. Circular Beam Subjected to a Concentrated Load at Midspan. V-Shaped Beams Subjected to Uniform Loading. V-Shaped Beams Subjected to a Concentrated Load at the Centerline of the Beam.

20 Introduction to Prestressed Concrete.

Prestressed Concrete. Materials and Allowable Stresses. Loss of Prestress. Elastic Analysis of Flexural Members. Strength Design of Flexural Members. Cracking Moment. Deflection. Design for Shear. Preliminary Design of Prestressed Concrete Flexural Members. End-Block Stresses.

21 Computer Programs and Flowcharts.

Introduction. Computer Programs. Flowcharts.

22 Unified Design Method.

Introduction. Definitions. Strength-Reduction Factor. Moment Redistribution of Negative Moments in Continuous Flexural Members. Design of Concrete Sections by the Unified Design Method.

Appendix A: Design Tables (Customary Units).

Appendix B: Design Tables (SI Units).

Appendix C: Structural AIDS.

Answers to Selected Problems.

Index.

show more

## About Nadim M. Hassoun

M. Nadim Hassoun is a professor emeritus of Civil Engineering at South Dakota State University. His research interests include structural and limit-state behavior of reinforced concrete, prestressed, precast, and partially prestressed concrete, as well as the structural behavior of high-strength concrete. As a professional engineer, he has extensive experience in the design, construction, and management of buildings, bridges, and other types of structures. Prof. Hassoun has been a member of many engineering organizations, including ACI, PCI, NSPE, ASEE, EERI, ASCE, SDES, and ICE (London). He has written two books on concrete design and a number of papers on subjects related to concrete. Professor Hassoun was the 1986 recipient of the Northwest Burlington Award.

show more

show more