Self-Timed Control of Concurrent Processes

Self-Timed Control of Concurrent Processes : The Design of Aperiodic Logical Circuits in Computers and Discrete Systems

List price: US$129.00

Currently unavailable

We can notify you when this item is back in stock

Add to wishlist

AbeBooks may have this title (opens in new window).

Try AbeBooks

Description

'Et moi ... ~ si j'avait su comment en revenir. One service mathematics has rendered thl je n'y serais point aile: human race. It has put common sense back where it belongs. on the topmost shelf nexl Jules Verne to the dusty canister labelled 'discarded non· The series is divergent; therefore we may be sense'. Eric T. Bell able to do something with it O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non· Iinearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and fO! other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com· puter science ... .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.
show more

Product details

  • Hardback | 432 pages
  • 156 x 233.9 x 25.4mm | 780.19g
  • Dordrecht, Netherlands
  • English
  • 1990 ed.
  • 432 p.
  • 0792305256
  • 9780792305255

Table of contents

1 Introduction.- 2 Asynchronous processes and their interpretation.- 2.1 Asynchronous processes.- 2.1.1 Definition.- 2.1.2 Some subclasses.- 2.1.3 Reposition.- 2.1.4 Structured situations.- 2.1.5 An asynchronous process as a metamodel.- 2.2 Petri nets.- 2.2.1 Model description.- 2.2.2 Some classes.- 2.2.3 Interpretation.- 2.3 Signal graphs.- 2.4 The Muller model.- 2.5 Parallel asynchronous flow charts.- 2.6 Asynchronous state machines.- 2.7 Reference notations.- 3 Self-synchronizing codes.- 3.1 Preliminary definitions.- 3.2 Direct-transition codes.- 3.3 Two-phase codes.- 3.4 Double-rail code.- 3.5 Code with identifier.- 3.6 Optimally balanced code.- 3.7 On the code redundancy.- 3.8 Differential encoding.- 3.9 Reference notations.- 4 Aperiodic circuits.- 4.1 Two-phase implementation of finite state machine.- 4.1.1 Matched implementation.- 4.2 Completion indicators and checkers.- 4.3 Synthesis of combinatorial circuits.- 4.3.1 Indicatability.- 4.3.2 Standard implementations.- 4.3.2.1 Minimum form implementation.- 4.3.2.2 Orthogonal form implementation.- 4.3.2.3 Hysteresis flip-flop-based implementation.- 4.3.2.4 Implementation based on "collective responsibility".- 4.4 Aperiodic flip-flops.- 4.4.1 Further discussion of flip-flop designs.- 4.4.1.1. RS-flip-flops.- 4.4.1.2 D-flip-flops.- 4.4.1.3 T-flip-flops.- 4.5 Canonical aperiodic implementations of finite state machines.- 4.5.1 Implementation with delay flip-flops.- 4.5.2 Implementation using flip-flops with separated inputs.- 4.5.3 Implementation with complementing flip-flops.- 4.6 Implementation with multiple phase signals.- 4.7 Implementation with direct transitions.- 4.8 On the definition of an aperiodic state machine.- 4.9 Reference notations.- 5 Circuit modelling of control flow.- 5.1 The modelling of Petri nets.- 5.1.1 Event-based modelling.- 5.1.2 Condition-based modelling.- 5.2 The modelling of parallel asynchronous flow charts.- 5.2.1 Implementation of standard fragments.- 5.2.2 A multiple use circuit.- 5.2.3 A loop control circuit.- 5.2.4 Using an arbiter.- 5.2.5 Guard-based implementation.- 5.3 Functional completeness and synthesis of semi-modular circuits.- 5.3.1 Formulation of the problem.- 5.3.2 Some properties of semi-modular circuits.- 5.3.3 Perfect implementation.- 5.3.4 Simple circuits.- 5.3.5 The implementation of distributive and totally sequential circuits.- 5.4 Synthesis of semi-modular circuits in limited bases.- 5.5 Modelling pipeline processes.- 5.5.1 Properties of modelling pipeline circuits.- 5.5.1.1 Pipelinization of parallel fragments.- 5.5.1.2 Pipelinization of a conditional branch.- 5.5.1.3 Transformation of a loop.- 5.5.1.4 Pipelinization for multiply-used sections.- 5.6 Reference notations.- 6 Composition of asynchronous processes and circuits.- 6.1 Composition of asynchronous processes.- 6.1.1 Reinstated process.- 6.1.2 Process reduction.- 6.1.3 Process composition.- 6.2 Composition of aperiodic circuits.- 6.2.1 The Muller theorem.- 6.2.2 The generalization of the Muller theorem.- 6.3 Algebra of asynchronous circuits.- 6.3.1 Operations on circuits.- 6.3.2 Laws and properties.- 6.3.3 Circuit transformations.- 6.3.4 Homological algebras of circuits.- 6.4 Reference notations.- 7 The matching of asynchronous processes and interface organization.- 7.1 Matched asynchronous processes.- 7.2 Protocol.- 7.3 The matching asynchronous process.- 7.4 The T2 interface.- 7.4.1 General notations.- 7.4.2 Communication protocol.- 7.4.3 Implementation.- 7.5 Asynchronous interface organization.- 7.5.1 Using the code with identifier.- 7.5.2 Using the optimally-balanced code.- 7.5.2.1 Half-byte data transfer.- 7.5.2.2 Byte data transfer.- 7.5.2.3 Using non-balanced representation.- 7.6 Reference notations.- 8 Analysis of asynchronous circuits and processes.- 8.1 The reachability analysis.- 8.2 The classification analysis.- 8.3 The set of operational states.- 8.4 The effect of non-zero wire delays.- 8.5 Circuit Petri nets.- 8.6 On the complexity of analysis algorithms.- 8.7 Reference notations.- 9 Anomalous behaviour of logical circuits and the arbitration problem.- 9.1 Arbiters.- 9.2 Oscillatory anomaly.- 9.3 Meta-stability anomaly.- 9.4 Designing correctly-operating arbiters.- 9.5 "Bounded" arbiters and safe inertial delays.- 9.6 Reference notations.- 10 Fault diagnosis and self-repair in aperiodic circuits.- 10.1 Totally self-checking combinational circuits.- 10.2 Totally self-checking sequential machines.- 10.3 Fault detection in autonomous circuits.- 10.4 Self-repair organization for aperiodic circuits.- 10.5 Reference notations.- 11 Typical examples of aperiodic design modules.- 11.1 The JK-flip-flop.- 11.2 Registers.- 11.3 Pipeline registers.- 11.3.1 Non-dense registers.- 11.3.2 Semi-dense pipeline register.- 11.3.3 Dense pipeline registers.- 11.3.4 One-byte dense pipeline register.- 11.3.5 Pipeline register with parallel read-write and the stack.- 11.3.6 Reversive pipeline registers.- 11.4 Converting single-rail signals into double-rail ones.- 11.4.1 Parallel register with single-rail inputs.- 11.4.2 Input and output heads of pipeline registers.- 11.5 Counters.- 11.6 Reference notations.- Editor's Epilogue.- References.
show more