Real-Time Search for Learning Autonomous Agents

Real-Time Search for Learning Autonomous Agents

By (author) 

Free delivery worldwide

Available. Dispatched from the UK in 4 business days
When will my order arrive?


Autonomous agents or multiagent systems are computational systems in which several computational agents interact or work together to perform some set of tasks. These systems may involve computational agents having common goals or distinct goals.
Real-Time Search for Learning Autonomous Agents focuses on extending real-time search algorithms for autonomous agents and for a multiagent world. Although real-time search provides an attractive framework for resource-bounded problem solving, the behavior of the problem solver is not rational enough for autonomous agents. The problem solver always keeps the record of its moves and the problem solver cannot utilize and improve previous experiments. Other problems are that although the algorithms interleave planning and execution, they cannot be directly applied to a multiagent world. The problem solver cannot adapt to the dynamically changing goals and the problem solver cannot cooperatively solve problems with other problem solvers. This book deals with all these issues.
Real-Time Search for Learning Autonomous Agents serves as an excellent resource for researchers and engineers interested in both practical references and some theoretical basis for agent/multiagent systems. The book can also be used as a text for advanced courses on the subject.
show more

Product details

  • Hardback | 126 pages
  • 160 x 231.1 x 15.2mm | 385.56g
  • Dordrecht, Netherlands
  • English
  • 1997 ed.
  • XVI, 126 p.
  • 0792399447
  • 9780792399445

Table of contents

1. Realtime Search Performance. 2. Controlling Learning Processes. 3. Adapting to Changing Goals. 4. Cooperating in Uncertain Situations. 5. Forming Problem Solving Organizations. Bibliography. Index.
show more