Quantitative Human Physiology

Quantitative Human Physiology : An Introduction

3.81 (11 ratings by Goodreads)
By (author) 

Free delivery worldwide

Available. Dispatched from the UK in 1 business day
When will my order arrive?


Quantitative Human Physiology: An Introduction, winner of a 2018 Textbook Excellence Award (Texty), is the first text to meet the needs of the undergraduate bioengineering student who is being exposed to physiology for the first time, but requires a more analytical/quantitative approach. This book explores how component behavior produces system behavior in physiological systems. Through text explanation, figures, and equations, it provides the engineering student with a basic understanding of physiological principles with an emphasis on quantitative aspects.
show more

Product details

  • Hardback | 1008 pages
  • 216 x 276 x 48.26mm | 3,080g
  • Academic Press Inc
  • San Diego, United States
  • English
  • 2nd edition
  • 0128008830
  • 9780128008836
  • 1,762,857

Table of contents

Unit 1: Physical and Chemical Foundations of Physiology

1.1. The Core Principles of Physiology

1.2. Physical Foundations of Physiology I: Pressure-Driven Flow

1.3. Physical Foundations of Physiology II: Electrical Force, Potential, Capacitance, and Current

Problem Set 1.1. Physical Foundations: Pressure and Electrical Forces and Flows

1.4. Chemical Foundations of Physiology I: Chemical Energy and Intermolecular Forces

1.5. Chemical Foundations of Physiology II: Concentration and Kinetics

1.6. Diffusion

1.7. Electrochemical Potential and Free Energy

Problem Set 1.2. Kinetics and Diffusion

Unit 2: Membranes, Transport, and Metabolism

2.1. Cell Structure

2.2. DNA and Protein Synthesis

2.3. Protein Structure

2.4. Biological Membranes

Problem Set 2.1. Surface Tension, Membrane Surface Tension, Membrane Structure, Microscopic Resolution, and Cell Fractionation

2.5. Passive Transport and Facilitated Diffusion

2.6. Active Transport: Pumps and Exchangers

2.7. Osmosis and Osmotic Pressure

Problem Set 2.2. Membrane Transport

2.8. Cell Signaling

2.9. ATP Production I: Glycolysis

2.10. ATP Production II: The TCA Cycle and Oxidative Phosphorylation

2.11. ATP Production III: Fatty Acid Oxidation and Amino Acid Oxidation

Unit 3: Physiology of Excitable Cells

3.1. The Origin of the Resting Membrane Potential

3.2. The Action Potential

3.3. Propagation of the Action Potential

Problem Set 3.1. Membrane Potential, Action Potential, and Nerve Conduction

3.4. Skeletal Muscle Mechanics

3.5. Contractile Mechanisms in Skeletal Muscle

3.6. The Neuromuscular Junction and Excitation-Contraction Coupling

3.7. Muscle Energetics, Fatigue, and Training

Problem Set 3.2. Neuromuscular Transmission, Muscle Force, and Energetics

3.8. Smooth Muscle

Unit 4: The Nervous System

4.1. Organization of the Nervous System

4.2. Cells, Synapses, and Neurotransmitters

4.3. Cutaneous Sensory Systems

4.4. Spinal Reflexes

4.5. Balance and Control of Movement

Problem Set 4.1. Nerve Conduction

4.6. The Chemical Senses

4.7. Hearing

4.8. Vision

4.2 Problem Set. Sensory Transduction

4.9. Autonomic Nervous System

Unit 5: The Cardiovascular System

5.1. Overview of the Cardiovascular System and the Blood

5.2. Plasma and Red Blood Cells

5.3. White Blood Cells and Inflammation

5.4. The Heart as a Pump

Problem Set 5.1. Blood

5.5. The Cardiac Action Potential

5.6. The Electrocardiogram

5.7. The Cellular Basis of Cardiac Contractility

5.8. The Cardiac Function Curve

Problem Set 5.2. Cardiac Work

5.9. Vascular Function: Hemodynamics

5.10. The Microcirculation and Solute Exchange

5.11. Regulation of Perfusion

5.12. Integration of Cardiac Output and Venous Return

5.13. Regulation of Arterial Pressure

Problem Set 5.3. Hemodynamics and Microcirculation

Unit 6: Respiratory Physiology

6.1. The Mechanics of Breathing

6.2. Lung Volumes and Airway Resistance

6.3. Gas Exchange in the Lungs

Problem Set 6.1. Airway Resistance and Alveolar Gas Exchange

6.4. Oxygen and Carbon Dioxide Transport

6.5. Acid-Base Physiology I: The Bicarbonate Buffer System and Respiratory Compensation

6.6. Control of Ventilation

Problem Set 6.2. Gas Transport and pH Disturbances

Unit 7: Renal Physiology

7.1. Body Fluid Compartments

7.2. Functional Anatomy of the Kidneys and Overview of Kidney Function

7.3. Glomerular Filtration

Problem Set 7.1. Fluid Volumes, Glomerular Filtration, and Clearance

7.4. Tubular Reabsorption and Secretion

7.5. Mechanism of Concentration and Dilution of Urine

7.6. Regulation of Fluid and Electrolyte Balance

7.7. Renal Component of Acid-Base Balance

Problem Set 7.2. Fluid and Electrolyte Balance and Acid-Base Balance

Unit 8: Gastrointestinal Physiology

8.1. Mouth and Esophagus

8.2. The Stomach

8.3. Intestinal and Colonic Chemoreception and Motility

8.4. Pancreatic and Biliary Secretion

8.5. Digestion and Absorption of the Macronutrients

8.6. Energy Balance and Regulation of Food Intake

Problem Set 8.1. Energy Balance

Unit 9: Endocrine Physiology

9.1. General Principles of Endocrinology

9.2. Hypothalamus and Pituitary Gland

9.3. The Thyroid Gland

9.4. The Endocrine Pancreas and Control of Blood Glucose

9.5. The Adrenal Cortex

9.6. The Adrenal Medulla and Integration of Metabolic Control

9.7. Calcium and Phosphorus Homeostasis I: The Calcitropic Hormones

9.8. Calcium and Phosphorus Homeostasis II: Target Tissues and Integrated Control

9.9. Female Reproductive Physiology

9.10. Male Reproductive Physiology

Problem Set 9.1. Ligand Binding
show more

About Joseph J Feher

Dr. Feher is professor of Physiology and Biophysics at Virginia Commonwealth University. He received his Ph.D. from Cornell University, and has research interests in the quantitative understanding of the mechanisms of calcium uptake and release by the cardiac sarcoplasmic reticulum, in the mechanisms of calcium transport across the intestine, and in muscle contraction and relaxation. Dr. Feher developed a course in Introductory Quantitative Physiology at VCU and has been course coordinator for more than a decade. He also teaches muscle and cell physiology to medical and graduate students and is course coordinator for the Graduate Physiology survey course in physiology given at VCU's School of Medicine.
show more

Rating details

11 ratings
3.81 out of 5 stars
5 55% (6)
4 9% (1)
3 18% (2)
2 0% (0)
1 18% (2)
Book ratings by Goodreads
Goodreads is the world's largest site for readers with over 50 million reviews. We're featuring millions of their reader ratings on our book pages to help you find your new favourite book. Close X