Programming with Higher-Order Logic

Programming with Higher-Order Logic

3.33 (3 ratings by Goodreads)
  • Electronic book text
By (author)  , By (author) 

List price: US$52.00

Currently unavailable

We can notify you when this item is back in stock

Add to wishlist

AbeBooks may have this title (opens in new window).

Try AbeBooks


Formal systems that describe computations over syntactic structures occur frequently in computer science. Logic programming provides a natural framework for encoding and animating such systems. However, these systems often embody variable binding, a notion that must be treated carefully at a computational level. This book aims to show that a programming language based on a simply typed version of higher-order logic provides an elegant, declarative means for providing such a treatment. Three broad topics are covered in pursuit of this goal. First, a proof-theoretic framework that supports a general view of logic programming is identified. Second, an actual language called λProlog is developed by applying this view to higher-order logic. Finally, a methodology for programming with specifications is exposed by showing how several computations over formal objects such as logical formulas, functional programs, and λ-terms and Ï -calculus expressions can be encoded in λ more

Product details

  • Electronic book text
  • Cambridge University Press (Virtual Publishing)
  • Cambridge, United Kingdom
  • 81 b/w illus.
  • 1139512129
  • 9781139512121

About Dale Miller

Dale Miller is currently Director of Research at INRIA-Saclay where he is the Scientific Leader of the Parsifal team. He has been a professor at the University of Pennsylvania, Pennsylvania State University and the Ecole Polytechnique, France. Miller is the Editor-in-Chief of the ACM Transactions on Computational Logic and has editorial duties on several other journals. He was awarded an ERC Advanced Investigators Grant in 2011 and is the recipient of the 2011 Test-of-Time award of the IEEE Symposium on Logic in Computer Science. He works on many topics in the general area of computational logic, including automated reasoning, logic programming, proof theory, unification theory, operational semantics and, most recently, proof certificates. Gopalan Nadathur is Professor of Computer Science at the University of Minnesota. He has previously held faculty appointments at Duke University, the University of Chicago and Loyola University Chicago. Nadathur's research interests span the areas of computational logic, programming languages and logic programming. His work has been regularly funded by the National Science Foundation and has appeared in publications such as the Journal of the Association of Computing Machinery, Information and Computation, Logic and Computation, the Journal of Automated Reasoning and Theory and Practice of Logic more

Table of contents

1. First-order terms and representations of data; 2. First-order horn clauses; 3. First-order hereditary Harrop formulas; 4. Typed lambda terms and formulas; 5. Using quantification at higher-order types; 6. Mechanisms for structuring large programs; 7. Computations over λ-terms; 8. Unification of λ-terms; 9. Implementing proof systems; 10. Computations over functional programs; 11. Encoding a process calculus language; Appendix: the Teyjus more

Review quote

'... I am impressed with the depth of the discussion and the clearly well-produced book. The authors have argued successfully for the power and versatility of the fundamental ideas underlying λProlog.' Sara Kalvala, Computing Reviewsshow more

Rating details

3 ratings
3.33 out of 5 stars
5 0% (0)
4 33% (1)
3 67% (2)
2 0% (0)
1 0% (0)
Book ratings by Goodreads
Goodreads is the world's largest site for readers with over 50 million reviews. We're featuring millions of their reader ratings on our book pages to help you find your new favourite book. Close X