Optimal Estimation of Dynamic Systems

Optimal Estimation of Dynamic Systems

4 (1 rating by Goodreads)
By (author) 

List price: US$165.95

Currently unavailable

Add to wishlist

AbeBooks may have this title (opens in new window).

Try AbeBooks


Most newcomers to the field of linear stochastic estimation go through a difficult process in understanding and applying the theory. This book minimizes the process while introducing the fundamentals of optimal estimation. "Optimal Estimation of Dynamic Systems" explores topics that are important in the field of control where the signals received are used to determine highly sensitive processes such as the flight path of a plane, the orbit of a space vehicle, or the control of a machine.The authors use dynamic models from mechanical and aerospace engineering to provide immediate results of estimation concepts with a minimal reliance on mathematical skills. The book documents the development of the central concepts and methods of optimal estimation theory in a manner accessible to engineering students, applied mathematicians, and practicing engineers. It includes rigorous theoretical derivations and a significant amount of qualitative discussion and judgments. It also presents prototype algorithms, giving detail and discussion to stimulate development of efficient computer programs and intelligent use of them. This book illustrates the application of optimal estimation methods to problems with varying degrees of analytical and numercial difficulty. It compares various approaches to help develop a feel for the absolute and relative utility of different methods, and provides many applications in the fields of aerospace, mechanical, and electrical engineering.show more

Product details

  • Hardback | 608 pages
  • 160.02 x 231.14 x 53.34mm | 952.54g
  • Taylor & Francis Inc
  • Chapman & Hall/CRC
  • United States
  • English
  • 95 black & white illustrations, 27 black & white tables
  • 158488391X
  • 9781584883913

Review quote

"A nice feature of this book is that it makes the effort to explain the underlying principles behind the formula for each algorithm; the relationship between different algorithms is equally well addressed. The text is a good combination of theory and practice. It will be a valuable addition to references for academic researchers and industrial engineers working in the field of estimation. It will also serve as a useful reference for graduate courses in control and estimation." - AIAA Journal, Vol. 43, No. 1, January 2005show more

Table of contents

LEAST SQUARES APPROXIMATION A Curve Fitting Example Linear Batch Estimation Linear Least Squares Weighted Least Squares Constrained Least Squares Linear Sequential Estimation Nonlinear Least Squares Estimation Basis Functions Advanced Topics Matrix Decompositions in Least Squares Kronecker Factorization and Least Squares Levenberg-Marquardt Method Projections in Least Squares Summary PROBABILITY CONCEPTS IN LEAST SQUARES Minimum Variance Estimation Estimation without a Prior State Estimates Estimation with a Prior State Estimates Unbiased Estimates Maximum Likelihood Estimation Cramer-Rao Inequality Nonuniqueness of the Weight Matrix Bayesian Estimation Advanced Topics Analysis of Covariance Errors Ridge Estimation Total Least Squares Summary REVIEW OF DYNAMICAL SYSTEMS Linear System Theory The State Space Approach Homogeneous Linear Dynamical Systems Forced Linear Dynamical Systems Linear State Variable Transformations Nonlinear Dynamical Systems Parametric Differentiation Observability Discrete-Time Systems Stability of Linear and Nonlinear Systems Attitude Kinematics and Rigid Body Dynamics Attitude Kinematics Rigid Body Dynamics Spacecraft Dynamics and Orbital Mechanics Spacecraft Dynamics Orbital Mechanics Aircraft Flight Dynamics Vibration Summary PARAMETER ESTIMATION: APPLICATIONS Global Positioning System Navigation Attitude Determination Vector Measurement Models Maximum Likelihood Estimation Optimal Quaternion Solution Information Matrix Analysis Orbit Determination Aircraft Parameter Identification Eigen-system Realization Algorithm Summary SEQUENTIAL STATE ESTIMATION A Simple First-Order Filter Example Full-Order Estimators Discrete-Time Estimators The Discrete-Time Kalman Filter Kalman Filter Derivation Stability and Joseph's Form Information Filter and Sequential Processing Steady-State Kalman Filter Correlated Measurement and Process Noise Orthogonality Principle The Continuous-Time Kalman Filter Kalman Filter Derivation in Continuous Time Kalman Filter Derivation from Discrete Time Stability Steady-State Kalman Filter Correlated Measurement and Process Noise The Continuous-Discrete Kalman Filter Extended Kalman Filter Advanced Topics Factorization Methods Colored-Noise Kalman Filtering Consistency of the Kalman Filter Adaptive Filtering Error Analysis Unscented Filtering Robust Filtering Summary BATCH STATE ESTIMATION Fixed-Interval Smoothing Discrete-Time Formulation Continuous-Time Formulation Nonlinear Smoothing Fixed-Point Smoothing Discrete-Time Formulation Continuous-Time Formulation Fixed-Lag Smoothing Discrete-Time Formulation Continuous-Time Formulation Advanced Topics Estimation/Control Duality Innovations Process Summary ESTIMATION OF DYNAMIC SYSTEMS: APPLICATIONS GPS Position Estimation GPS Coordinate Transformations Extended Kalman Filter Application to GPS Attitude Estimation Multiplicative Quaternion Formulation Discrete-Time Attitude Estimation Murrell's Version Farrenkopf's Steady-State Analysis Orbit Estimation Target Tracking of Aircraft The a-b Filter The a-b-g Filter Aircraft Parameter Estimation Smoothing with the Eigen-system Realization Algorithm Summary OPTIMAL CONTROL AND ESTIMATION THEORY Calculus of Variations Optimization with Differential Equation Constraints Pontryagin's Optimal Control Necessary Conditions Discrete-Time Control Linear Regulator Problems Continuous-Time Formulation Discrete-Time Formulation Linear Quadratic-Gaussian Controllers Continuous-Time Formulation Discrete-Time Formulation Loop Transfer Recovery Spacecraft Control Design Summary APPENDIX A MATRIX PROPERTIES Basic Definitions of Matrices Vectors Matrix Norms and Definiteness Matrix Decompositions Matrix Calculus APPENDIX B BASIC PROBABILITY CONCEPTS Functions of a Single Discrete-Valued Random Variable Functions of Discrete-Valued Random Variables Functions of Continuous Random Variables Gaussian Random Variables Chi-Square Random Variables Propagation of Functions through Various Models Linear Matrix Models Nonlinear Models APPENDIX C PARAMETER OPTIMIZATION METHODS C.1 Unconstrained Extrema C.2 Equality Constrained Extrema C.3 Nonlinear Unconstrained Optimization C.3.1 Some Geometrical Insights C.3.2 Methods of Gradients C.3.3 Second-Order (Gauss-Newton) Algorithm APPENDIX D COMPUTER SOFTWARE Indexshow more

Rating details

1 ratings
4 out of 5 stars
5 0% (0)
4 100% (1)
3 0% (0)
2 0% (0)
1 0% (0)
Book ratings by Goodreads
Goodreads is the world's largest site for readers with over 50 million reviews. We're featuring millions of their reader ratings on our book pages to help you find your new favourite book. Close X