Nuclear Magnetic Resonance: Nuclear Magnetic Resonance, Part A: Part A Volume 176

Nuclear Magnetic Resonance: Nuclear Magnetic Resonance, Part A: Part A Volume 176

Editor-in-chief  , Editor-in-chief  , Volume editor  , Volume editor 

Free delivery worldwide

Available. Dispatched from the UK in 1 business day
When will my order arrive?


This volume, as does Volume 177, provides a general background of modern NMR techniques, with a specific focus on NMR techniques that pertain to proteins and enzymology, and a "snapshot" of the current state of the art in NMR experimental techniques. These books enable the reader to understand a given technique, to evaluate its strengths and limitations, to decide which is the best approach, and, finally, to design an experiment using the chosen technique to solve a problem.
show more

Product details

  • Hardback | 530 pages
  • 156 x 230 x 28mm | 920.81g
  • Academic Press Inc
  • San Diego, United States
  • English
  • 0121820777
  • 9780121820770

Review quote

Praise for the Volume
"There is little doubt but that... this is a useful volume to have available at the lab bench."
"The editors have succeeded in producing a book that can serve as a very good source of information when one wishes to begin working in a new area... The individual chapters generally provide well-balanced, reliable, and up-to-date accounts of the techniques, with adequate references to the major basic papers. This is a good, readable book and a valuable reference volume."
Praise for the Series
"The Methods in Enzymology series represents the gold-standard."
"Incomparably useful."
"It is a true 'methods' series, including almost every detail from basic theory to sources of equipment and reagents, with timely documentation provided on each page."
"The series has been following the growing, changing and creation of new areas of science. It should be on the shelves of all libraries in the world as a whole collection."
"The appearance of another volume in that excellent series, Methods in Enzymology, is always a cause for appreciation for those who wish to successfully carry out a particular technique or prepare an enzyme or metabolic intermediate without the tiresome prospect of searching through unfamiliar literature and perhaps selecting an unproven method which is not easily reproduced."
"If we had some way to find the work most often consulted in the laboratory, it could well be the multi-volume series Methods in Enzymology...a great work."
"A series that has established itself as a definitive reference for biochemists."
show more

Table of contents

Basic Techniques: J.A. Ferretti and G.H. Weiss, One-Dimensional Nuclear Overhauser Effects and Peak Intensity Measurements. J.L. Markley, Two-Dimensional Nuclear Magnetic Resonance Spectroscopy of Protein: An Overview. P.J. Hore, Solvent Suppression. N.J. Oppenheimer, Sample Preparation. Advanced Techniques: G. Wagner, Heteronuclear Nuclear Magnetic Resonance Experiments for Studies of Protein Conformation. M. Rance, W.J. Chazin, C. Dalvit, and P.E. Wright, Multiple-Quantum Nuclear Magnetic Resonance. A. Bax, S.W. Sparks, and D.A. Torchia, Detection of Insensitive Nuclei. A. Bax, Homonuclear Hartmann-Hahn Experiments. B.A. Borgias and T.L. James, Two-Dimensional Nuclear Overhauser Effect: Complete Relaxation Matrix Analysis. N. Niccolai and C. Rossi, Selective Relaxation Techniques. L.R. Brown and B.T. Farmer II, Rotating Frame Nuclear Overhauser Effect. J.C. Hoch, Modern Spectrum Analysis in Nuclear Magnetic Resonance: Alternatives to Fourier Transform. S.J. Opella and P.L. Stewart, Solid State Nuclear Magnetic Resonance Structural Studies of Proteins. Enzyme Dynamics: Rate Constants: B.D.N. Rao, Nuclear Magnetic Resonance Line-Shape Analysis and Determination of Exchange Rates. J.J Led, H. Gesmar, and F. Abildgaard, Applicability of Magnetization Transfer Nuclear Magnetic Resonance to Study Chemical Exchange Reactions. B. Berkowitz and R.S. Balaban , Two-Dimensional Nuclear Magnetic Resonance Studies of Enzyme Kinetics and Metabolites in Vivo. P. R*adosch, Isotope Exchange. Molecular Motions: R.E. London, Interpreting Protein Dynamics with Nuclear Magnetic Resonance Relaxation Measurements. M.A. Keniry, Solid-State Deuterium Nuclear Magnetic Resonance Spectroscopy of Proteins. T. Schleich, C.F. Morgan, and G.H. Caines, Protein Rotational Correlation Times by Carbon-13 Rotating-Frame Spin-Lattice Relaxation in Presence of Off-Resonance Radiofrequency Field. R.L. Haner and T. Schleich, Measurement of Translational Motion by Pulse-Gradient Spin-Echo Nuclear Magnetic Resonance. H. Roder, Structural Characterization of Protein-Folding Intermediates by Proton Nuclear Magnetic Resonance and Hydrogen Exchange. Appendix: Computer Programs Related to Nuclear Magnetic Resonance: Availability, Summaries, and Critiques. Author Index. Subject Index.
show more