Nonparametric Inference on Manifolds

Nonparametric Inference on Manifolds : With Applications to Shape Spaces

  • Electronic book text
By (author)  , By (author) 

List price: US$135.00

Currently unavailable

We can notify you when this item is back in stock

Add to wishlist

AbeBooks may have this title (opens in new window).

Try AbeBooks

Description

This book introduces in a systematic manner a general nonparametric theory of statistics on manifolds, with emphasis on manifolds of shapes. The theory has important and varied applications in medical diagnostics, image analysis, and machine vision. An early chapter of examples establishes the effectiveness of the new methods and demonstrates how they outperform their parametric counterparts. Inference is developed for both intrinsic and extrinsic Frechet means of probability distributions on manifolds, then applied to shape spaces defined as orbits of landmarks under a Lie group of transformations - in particular, similarity, reflection similarity, affine and projective transformations. In addition, nonparametric Bayesian theory is adapted and extended to manifolds for the purposes of density estimation, regression and classification. Ideal for statisticians who analyze manifold data and wish to develop their own methodology, this book is also of interest to probabilists, mathematicians, computer scientists, and morphometricians with mathematical training.show more

Product details

  • Electronic book text
  • CAMBRIDGE UNIVERSITY PRESS
  • Cambridge University Press (Virtual Publishing)
  • Cambridge, United Kingdom
  • 20 b/w illus.
  • 1139094769
  • 9781139094764

Review quote

'... this is an excellent text that will benefit many students in computer science, mathematics, and physics ... A significant plus of the book is the library of MATLAB codes and datasets available for download from the authors' site.' Alexander Tzanov, Computing Reviewsshow more

Table of contents

1. Introduction; 2. Examples; 3. Location and spread on metric spaces; 4. Extrinsic analysis on manifolds; 5. Intrinsic analysis on manifolds; 6. Landmark-based shape spaces; 7. Kendall's similarity shape spaces Σkm; 8. The planar shape space Σk2; 9. Reflection similarity shape spaces RΣkm; 10. Stiefel manifolds; 11. Affine shape spaces AΣkm; 12. Real projective spaces and projective shape spaces; 13. Nonparametric Bayes inference; 14. Regression, classification and testing; i. Differentiable manifolds; ii. Riemannian manifolds; iii. Dirichlet processes; iv. Parametric models on Sd and Σk2; References; Subject index.show more