Multiple-point Geostatistics
27%
off

Multiple-point Geostatistics : Stochastic Modeling with Training Images

By (author)  , By (author) 

Free delivery worldwide

Available. Dispatched from the UK in 2 business days
When will my order arrive?

Not expected to be delivered to the United States by Christmas Not expected to be delivered to the United States by Christmas

Description

This book provides a comprehensive introduction to multiple-point geostatistics, where spatial continuity is described using training images. Multiple-point geostatistics aims at bridging the gap between physical modelling/realism and spatio-temporal stochastic modelling. The book provides an overview of this new field in three parts. Part I presents a conceptual comparison between traditional random function theory and stochastic modelling based on training images, where random function theory is not always used. Part II covers in detail various algorithms and methodologies starting from basic building blocks in statistical science and computer science. Concepts such as non-stationary and multi-variate modeling, consistency between data and model, the construction of training images and inverse modelling are treated. Part III covers three example application areas, namely, reservoir modelling, mineral resources modelling and climate model downscaling. This book will be an invaluable reference for students, researchers and practitioners of all areas of the Earth Sciences where forecasting based on spatio-temporal data is performed.show more

Product details

  • Hardback | 376 pages
  • 166 x 244 x 24mm | 939.99g
  • John Wiley and Sons Ltd
  • Wiley-Blackwell (an imprint of John Wiley & Sons Ltd)
  • Chicester, United Kingdom
  • English
  • 111866275X
  • 9781118662755
  • 948,957

About Jef Caers

Gregoire Mariethoz is Professor Assistant at the Faculty of Geosciences and Environment of the University of Lausanne, Switzerland, and Adjunct Senior Lecturer in Water Resources Engineering at the University of New South Wales, Australia. Jef Caers is Professor of Energy Resources Engineering at Stanford University, USA and Director of the Stanford Center for Reservoir Forecasting. His previous book publications include Petroleum Geostatistics (SPE) and Modeling Uncertainty in the Earth Sciences (Wiley-Blackwell).show more

Back cover copy

This book provides a comprehensive introduction to multiple-point geostatistics, where spatial continuity is described using training images. Multiple-point geostatistics aims at bridging the gap between physical modelling/realism and spatio-temporal stochastic modelling. The book provides an overview of this new field in three parts. Part I presents a conceptual comparison between traditional random function theory and stochastic modelling based on training images, where random function theory is not always used. Part II covers in detail various algorithms and methodologies starting from basic building blocks in statistical science and computer science. Concepts such as non-stationary and multi-variate modeling, consistency between data and model, the construction of training images and inverse modelling are treated. Part III covers three example application areas, namely, reservoir modelling, mineral resources modelling and climate model downscaling. This book will be an invaluable reference for students, researchers and practitioners of all areas of the Earth Sciences where forecasting based on spatio-temporal data is performed.show more

Review quote

I benefited from this book and plan to keep it as a resource on my bookshelf. I recommend Multiple-point Geostatistics: Stochastic Modeling with Training Images to my peers in mathematical geosciences. "I benefited from this book and plan to keep it as a resource on my bookshelf. I recommend Multiple-point Geostatistics: Stochastic Modeling with Training Images to my peers in mathematical geosciences." (Mathematical Geosciences, 2016)show more

Table of contents

Preface, vii Acknowledgments, xi Part I Concepts I.1 Hiking in the Sierra Nevada, 3 I.2 Spatial estimation based on random function theory, 7 I.3 Universal kriging with training images, 29 I.4 Stochastic simulations based on random function theory, 49 I.5 Stochastic simulation without random function theory, 59 I.6 Returning to the Sierra Nevada, 75 Part II Methods II.1 Introduction, 87 II.2 The algorithmic building blocks, 91 II.3 Multiple-point geostatistics algorithms, 155 II.4 Markov random fields, 173 II.5 Nonstationary modeling with training images, 183 II.6 Multivariate modeling with training images, 199 II.7 Training image construction, 221 II.8 Validation and quality control, 239 II.9 Inverse modeling with training images, 259 II.10 Parallelization, 295 Part III Applications III.1 Reservoir forecasting the West Coast of Africa (WCA) reservoir, 303 III.2 Geological resources modeling in mining, 329 Coauthored by Cristian P'erez, Julian M. Ortiz, & Alexandre Boucher III.3 Climate modeling application the case of the Murray Darling Basin, 345 Index, 361show more