Molecular Design and Modeling: Molecular Design and Modeling: Concepts and Applications, Part B: Antibodies and Antigens, Nucleic Acids, Polysaccharides, and Drugs Antibodies and Antigens, Nucleic Acids, Polysaccharides, and Drugs: Pt. B Volume 203

Molecular Design and Modeling: Molecular Design and Modeling: Concepts and Applications, Part B: Antibodies and Antigens, Nucleic Acids, Polysaccharides, and Drugs Antibodies and Antigens, Nucleic Acids, Polysaccharides, and Drugs: Pt. B Volume 203

Editor-in-chief  , Editor-in-chief  , Volume editor 

List price: US$72.95

Currently unavailable

Add to wishlist

AbeBooks may have this title (opens in new window).

Try AbeBooks

Description

Computer-based design and modeling, computational approaches, and instrumental methods for elucidating molecular mechanisms of protein folding and ligand-acceptor interactions are included in Volumes 202 and 203, as are genetic and chemical methods for the production of functional molecules including antibodies and antigens, enzymes, receptors, nucleic acids and polysaccharides, and drugs.
show more

Product details

  • Hardback | 764 pages
  • 158 x 232 x 38mm | 1,220.17g
  • Academic Press Inc
  • San Diego, United States
  • English
  • 0121821048
  • 9780121821043

Review quote

Praise for the Series
"The Methods in Enzymology series represents the gold-standard."
--NEUROSCIENCE
"Incomparably useful."
--ANALYTICAL BIOCHEMISTRY
"It is a true 'methods' series, including almost every detail from basic theory to sources of equipment and reagents, with timely documentation provided on each page."
--BIO/TECHNOLOGY
"The series has been following the growing, changing and creation of new areas of science. It should be on the shelves of all libraries in the world as a whole collection."
--CHEMISTRY IN INDUSTRY
"The appearance of another volume in that excellent series, Methods in Enzymology, is always a cause for appreciation for those who wish to successfully carry out a particular technique or prepare an enzyme or metabolic intermediate without the tiresome prospect of searching through unfamiliar literature and perhaps selecting an unproven method which is not easily reproduced."
--AMERICAN SOCIETY OF MICROBIOLOGY NEWS
"If we had some way to find the work most often consulted in the laboratory, it could well be the multi-volume series Methods in Enzymology...a great work."
--ENZYMOLOGIA
"A series that has established itself as a definitive reference for biochemists."
--JOURNAL OF CHROMATOGRAPHY
show more

Table of contents

Antibodies and Antigens: Antibody Combining Site:
E.A. Padlan and E.A. Kabat, Modeling of Antibody Combining Sites.
M.B. Bolger and M.A. Sherman, Computer Modeling of the Combining Site Structure of Anti-hapten Monoclonal Antibodies.
J.S. Huston, M. Mudgett-Hunter, M.-S. Tai, J. McCartney, F. Warren, E. Haber, and H. Oppermann, Protein Engineering of Single-Chain Fv Analogs and Fusion Proteins.
S. Johnson and R.E. Bird, Construction of Single-Chain Fv Derivatives of Monoclonal Antibodies and Their Production in Escherichia coli.
D. G~adussow and G. Seemann, Humanization of Monoclonal Antibodies.
Antibody-Antigen Interactions:
A.C.R. Martin, J.C. ~Cheetham, and A. Rees, Molecular Modeling of Antibody Combining Sites.
I.A. Wilson, J.M. Rini, D.H. Fremont, G.G. Fieser, and E.A Stura, X-Ray Crystallographic Analysis of Free and Antigen-Complexed Fab Fragments to Investigate Structural Basis of Immune Recognition.
J.L. Pellequer, E. Westhof, and M.H.V. Van Regenmortel, Predicting Location of Continuous Epitopes in Proteins from Their Primary Structures.
J.C. Cheetham, C. Redfield, R.E. Griest, C.M. Dobson, and A.R. Rees, Use of Two-Dimensional 1H Nuclear Magnetic Resonance to Study High-Affinity Antibody-Peptide Interactions.
J. Anglister and F. Naider, Nuclear Magnetic Resonance for Studying Peptide-Antibody Complexes by Transferred Nuclear Overhauser Effect Difference Spectroscopy.
P. Tsang, M. Rance, and P.E. Wright, ~Isotope-Edited Nuclear Magnetic Resonance Studies of Fab-Peptide Complexes.
J.E. Jentoft, Reductive Methylation and Carbon-13 Nuclear Magnetic Resonance in Structure-Function Studies of the Fc Fragment and Its Subfragments.
N. Boisset and J.N. Lamy, Immunoelectron Microscopy and Image Processing for Epitope Mapping.
W.-J. Syu and L. Kahan, Characterization of Antigenic Structures by Mapping on Resin-Bound Epitope Analogs.
B.J. Walsh and M.E. Howden, Epitope Mapping of Allergens for Rapid Localization of Continuous Allergenic Determinants.
M. Takahashi, S.A. Fuller, and S. Winston, Design and Production of Bispecific Monoclonal Antibodies by Hybrid Hybridomas for Use in ~Immunoassay. Catalytic
Antibodies and Vaccines:
K.M. Shokat and P.G. Schultz, Catalytic Antibodies.
D. Hilvert and K.W. Hill, Antibody Catalysis of Concerted, Carbon-Carbon Bond-Forming Reactions.
F. Sinigaglia, P. Romagnoli, M. Guttinger, B. Takacs, and J.R.L. Pink, Selection of T Cell Epitopes and Vaccine Engineering.
D.J. Evans and J.W. Almond, Design, Construction, and Characterization of Poliovirus Antigen Chimeras.
Nucleic Acids and Polysaccharides:
W.K. Olson and P. Zhang, Computer Simulation of DNA Supercoiling.
S. Neidle and T.C. Jenkins, Molecular Modeling to Study DNA Intercalation by Antitumor Drugs.
E.L. Loechler, Molecular Modeling in Mutagenesis and Carcinogenesis.
J. Peltonen, S. Jaakkola, and J. Uitto, In Situ Hybridization and Immunodetection Techniques for Simultaneous~Localization of Messenger RNAs and Protein Epitopes in Tissue Sections and Cultured Cells.
P. Schimmel and J.J. Burbaum, Transfer RNA with Double Identity for in Vitro Kinetic Modeling of Transfer RNA Identity in Vivo.
N.R. Pace and D.S. Waugh, Design of Simplified Ribonuclease P RNA by Phylogenetic Comparison.
S. P~aaerez, Molecular Modeling and Electron Diffraction of Polysaccharides.
A.D. Cardin, D.A. Demeter, H.J.R. Weintraub, and R.L. Jackson, Molecular Design and Modeling of Protein-Heparin Interactions.
Drugs:
Y.C. Martin, Computer-Assisted Rational Drug Design.
D.J. Livingstone, Pattern Recognition in Rational Drug Design.
P.-A. Carrupt, N. El Tayar, A. Karlen, and B. Testa, Molecular Electrostatic Potentials for ~Characterizing Drug-Biosystem Interactions.
T.M. Gund and C.E. Spivak, Pharmacophore for Nicotinic Agonists.
Cross-Index to Prior Volumes: Related Chapters Published in Previous Volumes of Methods in Enzymology.
Each chapter includes references.
Author Index.
Subject Index.
show more