Microsystem Design
21%
off

Microsystem Design

4.15 (13 ratings by Goodreads)
By (author) 

Free delivery worldwide

Available. Dispatched from the UK in 3 business days
When will my order arrive?

Description

It is a real pleasure to write the Foreword for this book, both because I have known and respected its author for many years and because I expect this book's publication will mark an important milestone in the continuing worldwide development of microsystems. By bringing together all aspects of microsystem design, it can be expected to facilitate the training of not only a new generation of engineers, but perhaps a whole new type of engineer - one capable of addressing the complex range of problems involved in reducing entire systems to the micro- and nano-domains. This book breaks down disciplinary barriers to set the stage for systems we do not even dream of today. Microsystems have a long history, dating back to the earliest days of mic- electronics. While integrated circuits developed in the early 1960s, a number of laboratories worked to use the same technology base to form integrated sensors. The idea was to reduce cost and perhaps put the sensors and circuits together on the same chip. By the late-60s, integrated MOS-photodiode arrays had been developed for visible imaging, and silicon etching was being used to create thin diaphragms that could convert pressure into an electrical signal. By 1970, selective anisotropic etching was being used for diaphragm formation, retaining a thick silicon rim to absorb package-induced stresses. Impurity- and electrochemically-based etch-stops soon emerged, and "bulk micromachining" came into its own.
show more

Product details

  • Hardback | 689 pages
  • 152 x 238 x 40mm | 1,120.37g
  • Dordrecht, Netherlands
  • English
  • 1st ed. 2000. Corr. 2nd printing 2004
  • XXVI, 689 p.
  • 0792372468
  • 9780792372462
  • 1,616,066

Table of contents

Foreword. Preface. Acknowledgments. Part I: Getting Started. 1. Introduction. 2. An Approach to MEMS Design. 3. Microfabrication. 4. Process Integration. Part II: Modeling Strategies. 5. Lumped Modeling. 6. Energy-Conserving Transducers. 7. Dynamics. Part III: Domain-Specific Details. 8. Elasticity. 9. Structures. 10. Energy Methods. 11. Dissipation and the Thermal Energy Domain. 12. Lumped Modeling of Dissipative Processes. 13. Fluids. Part IV: Circuit and System Issues. 14. Electronics. 15. Feedback Systems. 16. Noise. Part V: Case Studies. 17. Packaging. 18. A Piezoresistive Pressure Sensor. 19. A Capacitive Accelerometer. 20. Electrostatic Projection Displays. 21. A Piezoelectric Rate Gyroscope. 22. DNA Amplification. 23. A Microbridge Gas Sensor. Appendices: A. Glossary of Notation. B. Electromagnetic Fields. C. Elastic Constants in Cubic Material. References. Index.
show more

About Stephen D. Senturia

Stephen D. Senturia formerly held the Barton L. Weller Chair in Electrical Engineering at MIT. He retired in 2002, and currently serves as Chairman and Chief Technology Officer of Polychromix, Inc. in Woburn, Massachusetts. He is Senior Editor of the ASME/IEEE Journal of Microelectromechanical Systems.
show more

Rating details

13 ratings
4.15 out of 5 stars
5 31% (4)
4 54% (7)
3 15% (2)
2 0% (0)
1 0% (0)
Book ratings by Goodreads
Goodreads is the world's largest site for readers with over 50 million reviews. We're featuring millions of their reader ratings on our book pages to help you find your new favourite book. Close X