Micromechanics of Composite Materials
24%
off

Micromechanics of Composite Materials : A Generalized Multiscale Analysis Approach

By (author)  , By (author) 

Free delivery worldwide

Available. Dispatched from the UK in 2 business days
When will my order arrive?

Description

With composites under increasing use in industry to replace traditional materials in components and structures, the modeling of composite performance, damage and failure has never been more important.

Micromechanics of Composite Materials: A Generalized Multiscale Analysis Approach brings together comprehensive background information on the multiscale nature of the composite, constituent material behaviour, damage models and key techniques for multiscale modelling, as well as presenting the findings and methods, developed over a lifetime's research, of three leading experts in the field.

The unified approach presented in the book for conducting multiscale analysis and design of conventional and smart composite materials is also applicable for structures with complete linear and nonlinear material behavior, with numerous applications provided to illustrate use.

Modeling composite behaviour is a key challenge in research and industry; when done efficiently and reliably it can save money, decrease time to market with new innovations and prevent component failure. This book provides the tools and knowledge from leading micromechanics research, allowing researchers and senior engineers within academia and industry with to improve results and streamline development workflows.
show more

Product details

  • Paperback | 1006 pages
  • 197 x 240 x 48.26mm | 2,080g
  • Butterworth-Heinemann Inc
  • Woburn, United States
  • English
  • Reprint
  • black & white illustrations
  • 012810127X
  • 9780128101278

Table of contents

1. Introduction 2. Constituent Material Modeling 3. Fundamentals of the Mechanics of Multiphase Materials 4. Homogenization Using Method of Cells 5. Homogenization Using the Generalized Method of Cells (GMC) 6. Homogenization Using the High Fidelity Generalized Method of Cells (HFGMC) 7. Multiscale Modeling 8. Fully Coupled Thermomicromechanical Analysis of Multiphase Composites 9. Micromechanical Analyses of Smart Composite Materials 10. Multiscale Analyses of Smart Composite Materials 11. Finite Strain Micromechanical Modeling of Multiphase Composite 12. Higher-Order Theory For Functionally Graded Materials 13. Wave propagation in Composite Materials
show more

About Jacob Aboudi

Jacob Aboudi is a Professor Emeritus at the School of Mechanical Engineering, Tel Aviv University, Israel. He was formerly Head of the university's Department of Solid Mechanics, Materials and Structures, and Dean of their Faculty of Engineering. He has held visiting appointments at the University of Strathclyde, Northwestern University, Virginia Tech., and the University of Virginia and has over 40 years of research experience. He has written over 250 journal articles and two prior books. Steven M. Arnold is Chief of the Mechanics and Life Prediction Branch within the Structures and Materials Division at NASA Glenn Research Center, Ohio, USA. He is the co-founder and director of NASA's Multiscale Analysis Center of Excellence (MACE), an Abe Silverstein Award recipient, and is co-founder and current Chairman of the Material Data Management Consortium (MDMC). He has over 25 years of research experience resulting in 300 technical publications and two U.S. patents. Brett A. Bednarcyk is a Senior Research Engineer and Discipline Lead for Analytical and Computational Mechanics in the Mechanics and Life Prediction Branch of the Structures and Materials Division, NASA Glenn Research Center, Ohio, USA. He has over 15 years of research experience, 140 technical publications, and is the primary developer of NASA's MAC/GMC software.
show more