Methods for Constructing Exact Solutions of Partial Differential Equations

Methods for Constructing Exact Solutions of Partial Differential Equations : Mathematical and Analytical Techniques with Applications to Engineering

By (author) 

Free delivery worldwide

Available. Dispatched from the UK in 2 business days
When will my order arrive?

Description

Differential equations, especially nonlinear, present the most effective way for describing complex physical processes. Methods for constructing exact solutions of differential equations play an important role in applied mathematics and mechanics. This book aims to provide scientists, engineers and students with an easy-to-follow, but comprehensive, description of the methods for constructing exact solutions of differential equations.
show more

Product details

  • Hardback | 352 pages
  • 155 x 235 x 20.83mm | 1,540g
  • New York, NY, United States
  • English
  • XVI, 352 p.
  • 0387250603
  • 9780387250601

Back cover copy

Differential equations, especially nonlinear, present the most effective way for describing complex physical processes. Each solution of a system of differential equations corresponds to a particular process. Therefore, methods for constructing exact solutions of differential equations play an important role in applied mathematics and mechanics. This book aims to provide scientists, engineers and students with an easy-to-follow, but comprehensive, description of the methods for constructing exact solutions of differential equations. The emphasis is on the methods of differential constraints, degenerate hodograph and group analysis. These methods have become a necessary part of applied mathematics and mathematical physics. The book is primarily designed to present both fundamental theoretical and algorithmic aspects of these methods. The description of algorithms contains illustrative examples which are typically taken from continuum mechanics. Some sections of the book introduce new applications and extensions of these methods, such as integro-differential and functional differential equations, a new area of group analysis.



It should also be noted that the method of differential constraints is not well known outside Russia; there are only a few books in English where the idea behind this method (without analysis) is briefly mentioned. This book is a result of an effort to introduce, at a fairly elementary level, many methods for constructing exact solutions collected in one book. It is based on the author's research and various courses and lectures given to undergraduate and graduate students, as well as professional audiences over the past twenty-five years. The book is assembled, in a coherent and comprehensive way, from results that are scattered across many different articles and books published over the last thirty years.



The approach is analytical. Introductions to theories are followed by examples. The book is written for students, engineers and scientists with diverse backgrounds and interests. For a deeper coverage of a particular method or an application, the readers are referred to special-purpose books and/or scientific articles referenced in the book. The prerequisites for the study are standard courses in calculus, linear algebra, and ordinary and partial differential equations.
show more

Table of contents

Equations with One Dependent Function.- Systems of Equations.- Method of the Degenerate Hodograph.- Method of Differential Constraints.- Invariant and Partially Invariant Solutions.- Symmetries of Equations with Nonlocal Operators.- Symbolic Computer Calculations.
show more

Review quote

From the reviews:





"The book presents the main methods for finding solutions of partial differential equations ... . is the first systematic presentation of methods for constructing exact solutions of PDE's and includes many classical methods ... . The book is quite comprehensive ... . Some of the approaches are little known in the wider research community, so the book fills this gap in the literature. The author defines the target audience as students, engineers and scientists ... interested in solving partial differential equations." (Irina Yehorchenko, Mathematical Reviews, Issue 2006 m)
show more