Mechanobiology : From Molecular Sensing to Disease

By (author) 
Free delivery worldwide Expected delivery to the United States in 14-19 business days.
Not ordering to the United States? Click here.
Not expected to be delivered to the United States by Christmas Not expected to be delivered to the United States by Christmas


Mechanobiology: From Molecular Sensing to Disease will provide a review of the current state of understanding of mechanobiology and its role in health and disease. It covers: Current understanding of the main molecular pathways by which cells sense and respond to mechanical stimuli, A review of diseases that with known or purported mechanobiological underpinnings; The role of mechanobiology in tissue engineering and regenerative medicine; Experimental methods to capture mechanobiological phenomena; Computational models in mechanobiology.
show more

Product details

  • Paperback | 254 pages
  • 191 x 235 x 10.16mm | 520g
  • United States
  • English
  • 0128179317
  • 9780128179314
  • 1,604,059

Table of contents

Section 1: Mechanobiological basis of diseases 1.1 Osteoporosis 1.2 Cardiovascular mechanics and disease 1.3 Glaucoma and eye diseases 1.4 Growth and development 1.5 Tissue engineering and regenerative medicine

Section 2: Cellular basis of Mechanobiology 2.1 Cells as strain gages and load cells 2.2 Cell - extracellular matrix interactions 2.3 Mechanobiological pathways 2.4 Mechanically mediated epigenetics

Section 3: Experimental methods 3.1 Effects of shear stress on cells 3.2 Three-dimensional culture systems 3.3 Bioreactors 3.4 Tissue and organ on a chip systems

Section 4: Computational simulations in mechanobiology 4.1 Cell aggregation 4.2 Growth models 5. Future prospects and challenges 6. Bibliography 7. Glossary
show more

About Glen L. Niebur

Glen Niebur is a professor of Aerospace and Mechanical Engineering at the University of Notre Dame. He holds bachelor's and master's degrees from the University of Minnesota, and the Ph.D. from the University of California. Research is focused on orthopedics, including bone quality, damage mechanics of trabecular bone, mechanobiology of bone, hard and soft tissue constitutive modeling, computational mechanics of tissues, and genetic factors affecting bone quality.

Current projects are investigating the interactions between microdamage formation in bone and the changes in bone porosity and structure that accompany osteoporosis. Osteoporosis results in changes at multiple levels of the hierarchical structure of bone, and these can either compensate for or enhance fracture risk. Medical imaging methods, especially computed tomography (CT) are used to image and quantify bone structures in bone samples and in live animals. A current project is using medical imaging to longitudinally monitor and understand fracture healing. Most recently, work has begun in the area of bone marrow mechanics, affects of aging and disease on bone marrow morphology, and interactions between bone and bone marrow.
show more