Linear Algebra

Linear Algebra

3.36 (41 ratings by Goodreads)
By (author)  , By (author) 

Free delivery worldwide

Available. Dispatched from the UK in 11 business days
When will my order arrive?


Fraleigh and Beauregard's text is known for its clear presentation and writing style, mathematical appropriateness, and overall student usability. Its inclusion of calculus-related examples, true/false problems, section summaries, integrated applications, and coverage of Cn make it a superb text for the sophomore or junior-level linear algebra course. This Third Edition retains the features that have made it successful over the years, while addressing recent developments of how linear algebra is taught and learned. Key concepts are presented early on, with an emphasis on geometry.
show more

Product details

  • Hardback | 608 pages
  • 194 x 241 x 29mm | 1,090g
  • Pearson
  • Reading, MA, United States
  • English
  • 3rd edition
  • 0201526751
  • 9780201526752
  • 1,861,142

Table of contents

1. Vectors, Matrices, and Linear Systems.

Vectors in Euclidean Spaces.

The Norm and the Dot Product.

Matrices and Their Algebra.

Solving Systems of Linear Equations.

Inverses of Square Matrices.

Homogeneous Systems, Subspaces, and Bases.

Application to Population Distribution (Optional).

Application to Binary Linear Codes (Optional).

2. Dimension, Rank, and Linear Transformations.

Independence and Dimension.

The Rank of a Matrix.

Linear Transformations of Euclidean Spaces.

Linear Transformations of the Plane (Optional).

Lines, Planes, and Other Flats (Optional).

3. Vector Spaces.

Vector Spaces.

Basic Concepts of Vector Spaces.

Coordinatization of Vectors.

Linear Transformations.

Inner-Product Spaces (Optional).

4. Determinants.

Areas, Volumes, and Cross Products.

The Determinant of a Square Matrix.

Computation of Determinants and Cramer's Rule.

Linear Transformations and Determinants (Optional).

5. Eigenvalues and Eigenvectors.

Eigenvalues and Eigenvectors.


Two Applications.

6. Orthogonality.


The Gram-Schmidt Process.

Orthogonal Matrices.

The Projection Matrix.

The Method of Least Squares.

7. Change of Basis.

Coordinatization and Change of Basis.

Matrix Representations and Similarity.

8. Eigenvalues: Further Applications and Computations.

Diagonalization of Quadratic Forms.

Applications to Geometry.

Applications to Extrema.

Computing Eigenvalues and Eigenvectors.

9. Complex Scalars.

Algebra of Complex Numbers.

Matrices and Vector Spaces with Complex Scalars.

Eigenvalues and Diagonalization.

Jordan Canonical Form.

10. Solving Large Linear Systems.

Considerations of Time.

The LU-Factorization.

Pivoting, Scaling, and Ill-Conditioned Matrices.


Mathematical Induction.

Two Deferred Proofs.

LINTEK Routines.

MATLAB Procedures and Commands Used in the Exercises.

show more

Rating details

41 ratings
3.36 out of 5 stars
5 20% (8)
4 29% (12)
3 32% (13)
2 7% (3)
1 12% (5)
Book ratings by Goodreads
Goodreads is the world's largest site for readers with over 50 million reviews. We're featuring millions of their reader ratings on our book pages to help you find your new favourite book. Close X