Journees Arithmetiques 1980

Journees Arithmetiques 1980

  • Electronic book text
Edited by 

Currently unavailable

We can notify you when this item is back in stock

Add to wishlist

AbeBooks may have this title (opens in new window).

Try AbeBooks


For a number of years, French mathematicians have run regular number theory conferences to which they have invited number theorists from many countries. To repay their hospitality, the London Mathematical Society arranged for the 1980 'Journees Arithmeiques' to be held in Exeter. The papers published here are either based on the main invited lectures or on selected research talks given at the conference. They cover all branches of the subject: combinatorial and elementary methods; analytic number theory; transcendence theory; Galois module theory and algebraic number theory in general; elliptic curves and modular functions; local fields; additive number theory; Diophantine geometry, and uniform distribution. It will be necessary reading for all those undertaking research in number theory.
show more

Product details

  • Electronic book text
  • Cambridge University Press (Virtual Publishing)
  • Cambridge, United Kingdom
  • 1139241990
  • 9781139241991

Table of contents

1. Abelian functions and transcendence D. Bertrand; 2. Measures of irrationality, transcendence and algebraic independence: recent progress G. V. Chudnovsky; 3. The Riemann zeta-function D. R. Heath-Brown; 4. On exponential sums and certain of their applications C. Hooley; 5. On the calculation of regulators and class numbers of quadratic fields H. W. Lenstra Jnr.; 6. Petits discriminants des corps de nombres Jaques Martinet; 7. Stickelberger relations in class groups and Galois module structure Leon R. McCulloh; 8. Uniform distribution of sequences of integers W. Narkiewicz; 9. Diophantine equations with parameters A. Schinzel; 10. Galois module structure of rings of integers M. J. Taylor; 11. On the fractional parts of n3, ssn2 and n R. C. Baker; 12. Irregularities of point distribution in unit cubes W. W. L. Chen; 13. The Hasse principle for pairs of quadratic forms C. F. Coray; 14. Algorithms d'approximation Diophantienne Eugene Dubois; 15. On the group PSL2(Z[i]) J. Elstroot, F. Grunewald and J. Mennicke; 16. Suites a faible discrepance en dimension s H. Faure; 17. Canonical divisibilities of values of p-adic L-functions Georges Gras; 18. Minimal related bases and related problems George P. Grekos; 19. Mean values for Fourier coefficients of cusp forms and sums of Kloosterman sums Henryk Iwaniec; 20. Non-standard methods in Diophantine geometry Ernst Kani; 21. An adelic proof of the Hardy-Littlewood theorem on Waring's problem Gilles Lachaud; 22. Class numbers of real Abelian number fields of small conduct F. J. Van Der Linden; 23. Algebraic independence properties of values of elliptic functions D. W. Masser and G. Wustholz; 24. Estimation elementaires effectives sur les nombres algebriques Maurice Mignotte; 25. Continued fractions and related algorithms G. J. Rieger; 26. Iwasawa theory and elliptic curves: supersingular primes Karl Rubin; 27. On relations between Gauss sums and cyclotomic units C. G. Schmidt; 28. Sur la proximite des diviseurs Gerald Tenenbaum
show more