Introduction to Time Series and Forecasting
9%
off

Introduction to Time Series and Forecasting

3.41 (29 ratings by Goodreads)
By (author)  , By (author) 

Free delivery worldwide

Available. Dispatched from the UK in 3 business days
When will my order arrive?

Description

This is an introduction to time series that emphasizes methods and analysis of data sets. The logic and tools of model-building for stationary and non-stationary time series are developed and numerous exercises, many of which make use of the included computer package, provide the reader with ample opportunity to develop skills. Statisticians and students will learn the latest methods in time series and forecasting, along with modern computational models and algorithms.
show more

Product details

  • Paperback | 437 pages
  • 210 x 279 x 23.11mm | 1,135g
  • New York, NY, United States
  • English
  • Revised
  • 2nd ed. 2002. Softcover reprint of the original 2nd ed. 2002
  • XIV, 437 p.
  • 1475777507
  • 9781475777505
  • 1,541,314

Table of contents

Preface 1 INTRODUCTION 1.1 Examples of Time Series 1.2 Objectives of Time Series Analysis 1.3 Some Simple Time Series Models 1.3.3 A General Approach to Time Series Modelling 1.4 Stationary Models and the Autocorrelation Function 1.4.1 The Sample Autocorrelation Function 1.4.2 A Model for the Lake Huron Data 1.5 Estimation and Elimination of Trend and Seasonal Components 1.5.1 Estimation and Elimination of Trend in the Absence of Seasonality 1.5.2 Estimation and Elimination of Both Trend and Seasonality 1.6 Testing the Estimated Noise Sequence 1.7 Problems 2 STATIONARY PROCESSES 2.1 Basic Properties 2.2 Linear Processes 2.3 Introduction to ARMA Processes 2.4 Properties of the Sample Mean and Autocorrelation Function 2.4.2 Estimation of $\gamma(\cdot)$ and $\rho(\cdot)$ 2.5 Forecasting Stationary Time Series 2.5.3 Prediction of a Stationary Process in Terms of Infinitely Many Past Values 2.6 The Wold Decomposition 1.7 Problems 3 ARMA MODELS 3.1 ARMA($p,q$) Processes 3.2 The ACF and PACF of an ARMA$(p,q)$ Process 3.2.1 Calculation of the ACVF 3.2.2 The Autocorrelation Function 3.2.3 The Partial Autocorrelation Function 3.3 Forecasting ARMA Processes 1.7 Problems 4 SPECTRAL ANALYSIS 4.1 Spectral Densities 4.2 The Periodogram 4.3 Time-Invariant Linear Filters 4.4 The Spectral Density of an ARMA Process 1.7 Problems 5 MODELLING AND PREDICTION WITH ARMA PROCESSES 5.1 Preliminary Estimation 5.1.1 Yule-Walker Estimation 5.1.3 The Innovations Algorithm 5.1.4 The Hannan-Rissanen Algorithm 5.2 Maximum Likelihood Estimation 5.3 Diagnostic Checking 5.3.1 The Graph of $\t=1,\ldots,n\ 5.3.2 The Sample ACF of the Residuals
show more

Review Text

From the reviews:
"The emphasis is on hands-on experience and the friendly software that accompanies the book serves the purpose admirably. ...
The authors should be congratulated for making the subject accessible and fun to learn. The book is a pleasure to read and highly recommended. I regard it as the best introductory text in town." ISI Short Book Reviews
show more

Review quote

From the reviews:
"The emphasis is on hands-on experience and the friendly software that accompanies the book serves the purpose admirably. ...
The authors should be congratulated for making the subject accessible and fun to learn. The book is a pleasure to read and highly recommended. I regard it as the best introductory text in town." ISI Short Book Reviews
show more

Rating details

29 ratings
3.41 out of 5 stars
5 14% (4)
4 31% (9)
3 38% (11)
2 17% (5)
1 0% (0)
Book ratings by Goodreads
Goodreads is the world's largest site for readers with over 50 million reviews. We're featuring millions of their reader ratings on our book pages to help you find your new favourite book. Close X