Introduction to Statistical Relational Learning

Introduction to Statistical Relational Learning

3.43 (16 ratings by Goodreads)
Edited by  , Edited by 

List price: US$65.00

Currently unavailable

We can notify you when this item is back in stock

Add to wishlist

AbeBooks may have this title (opens in new window).

Try AbeBooks

Description

Advanced statistical modeling and knowledge representation techniques for a newly emerging area of machine learning and probabilistic reasoning; includes introductory material, tutorials for different proposed approaches, and applications.

Handling inherent uncertainty and exploiting compositional structure are fundamental to understanding and designing large-scale systems. Statistical relational learning builds on ideas from probability theory and statistics to address uncertainty while incorporating tools from logic, databases and programming languages to represent structure. In Introduction to Statistical Relational Learning, leading researchers in this emerging area of machine learning describe current formalisms, models, and algorithms that enable effective and robust reasoning about richly structured systems and data. The early chapters provide tutorials for material used in later chapters, offering introductions to representation, inference and learning in graphical models, and logic. The book then describes object-oriented approaches, including probabilistic relational models, relational Markov networks, and probabilistic entity-relationship models as well as logic-based formalisms including Bayesian logic programs, Markov logic, and stochastic logic programs. Later chapters discuss such topics as probabilistic models with unknown objects, relational dependency networks, reinforcement learning in relational domains, and information extraction. By presenting a variety of approaches, the book highlights commonalities and clarifies important differences among proposed approaches and, along the way, identifies important representational and algorithmic issues. Numerous applications are provided throughout.
show more

Product details

  • Hardback | 608 pages
  • 203 x 254 x 32mm | 1,270g
  • MIT Press
  • Cambridge, Mass., United States
  • English
  • 134 fig, 42 tbl illus.; 176 Illustrations, unspecified
  • 0262072882
  • 9780262072885
  • 867,199

About Lise Getoor

Lise Getoor is Assistant Professor in the Department of Computer Science at the University of Maryland. Ben Taskar is Assistant Professor in the Computer and Information Science Department at the University of Pennsylvania. Daphne Koller is Professor in the Department of Computer Science at Stanford University. Nir Friedman is Professor in the Department of Computer Science and Engineering at Hebrew University. Lise Getoor is Assistant Professor in the Department of Computer Science at the University of Maryland. Ben Taskar is Assistant Professor in the Computer and Information Science Department at the University of Pennsylvania. Pieter Abbeel is Assistant Professor in the Department of Electrical Engineering and Computer Sciences at the University of California, Berkeley. David Heckerman is Assistant Professor of Computer Science at the University of Southern California. He received his doctoral degree in Medical Information Sciences from Stanford University. Stuart Russell is Associate Professor of Computer Science at the University of California, Berkeley. This book builds on important philosophical and technical work by his coauthor, the late Eric Wefald.
show more

Rating details

16 ratings
3.43 out of 5 stars
5 6% (1)
4 38% (6)
3 50% (8)
2 6% (1)
1 0% (0)
Book ratings by Goodreads
Goodreads is the world's largest site for readers with over 50 million reviews. We're featuring millions of their reader ratings on our book pages to help you find your new favourite book. Close X