An Introduction to Minimax Theorems and Their Applications to Differential Equations

An Introduction to Minimax Theorems and Their Applications to Differential Equations

By (author)  , By (author) 

Free delivery worldwide

Available. Dispatched from the UK in 3 business days
When will my order arrive?


This text is meant to be an introduction to critical point theory and its ap- plications to differential equations. It is designed for graduate and postgrad- uate students as well as for specialists in the fields of differential equations, variational methods and optimization. Although related material can be the treatment here has the following main purposes: found in other books, * To present a survey on existing minimax theorems, * To give applications to elliptic differential equations in bounded do- mains and periodic second-order ordinary differential equations, * To consider the dual variational method for problems with continuous and discontinuous nonlinearities, * To present some elements of critical point theory for locally Lipschitz functionals and to give applications to fourth-order differential equa- tions with discontinuous nonlinearities, * To study homo clinic solutions of differential equations via the varia- tional method. The Contents of the book consist of seven chapters, each one divided into several sections. A bibliography is attached to the end of each chapter.
In Chapter I, we present minimization theorems and the mountain-pass theorem of Ambrosetti-Rabinowitz and some of its extensions. The con- cept of differentiability of mappings in Banach spaces, the Fnkhet's and Gateaux derivatives, second-order derivatives and general minimization the- orems, variational principles of Ekeland [EkI] and Borwein & Preiss [BP] are proved and relations to the minimization problem are given. Deformation lemmata, Palais-Smale conditions and mountain-pass theorems are consid- ered.
show more

Product details

  • Hardback | 274 pages
  • 162.6 x 241.3 x 22.9mm | 567g
  • Dordrecht, Netherlands
  • English
  • 2001 ed.
  • XII, 274 p.
  • 0792368320
  • 9780792368328

Table of contents

Preface. 1. Minimization and Mountain-Pass Theorems. 2. Saddle-Point and Linking Theorems. 3. Applications to Elliptic Problems in Bounded Domains. 4. Periodic Solutions for Some Second-Order Differential Equations. 5. Dual Variational Method and Applications. 6. Minimax Theorems for Locally Lipschitz Functionals and Applications. 7. Homoclinic Solutions of Differential Equations. Notations. Index.
show more