Introduction to Machine Learning

Introduction to Machine Learning

3.68 (195 ratings by Goodreads)
By (author) 

Free delivery worldwide

Available. Dispatched from the UK in 3 business days
When will my order arrive?

Description

A substantially revised third edition of a comprehensive textbook that covers a broad range of topics not often included in introductory texts.

The goal of machine learning is to program computers to use example data or past experience to solve a given problem. Many successful applications of machine learning exist already, including systems that analyze past sales data to predict customer behavior, optimize robot behavior so that a task can be completed using minimum resources, and extract knowledge from bioinformatics data. Introduction to Machine Learning is a comprehensive textbook on the subject, covering a broad array of topics not usually included in introductory machine learning texts. Subjects include supervised learning; Bayesian decision theory; parametric, semi-parametric, and nonparametric methods; multivariate analysis; hidden Markov models; reinforcement learning; kernel machines; graphical models; Bayesian estimation; and statistical testing.

Machine learning is rapidly becoming a skill that computer science students must master before graduation. The third edition of Introduction to Machine Learning reflects this shift, with added support for beginners, including selected solutions for exercises and additional example data sets (with code available online). Other substantial changes include discussions of outlier detection; ranking algorithms for perceptrons and support vector machines; matrix decomposition and spectral methods; distance estimation; new kernel algorithms; deep learning in multilayered perceptrons; and the nonparametric approach to Bayesian methods. All learning algorithms are explained so that students can easily move from the equations in the book to a computer program. The book can be used by both advanced undergraduates and graduate students. It will also be of interest to professionals who are concerned with the application of machine learning methods.
show more

Product details

  • Hardback | 640 pages
  • 203 x 229 x 29mm | 1,211.09g
  • MIT Press
  • Cambridge, Mass., United States
  • English
  • New edition
  • third edition
  • 192 b&w illus.; 384 Illustrations, unspecified
  • 0262028182
  • 9780262028189
  • 91,463

About Ethem Alpaydin

Ethem Alpaydin is Professor in the Department of Computer Engineering at OEzyegin University and Member of The Science Academy, Istanbul. He is the author of Machine Learning: The New AI, a volume in the MIT Press Essential Knowledge series.s).
show more

Rating details

195 ratings
3.68 out of 5 stars
5 25% (49)
4 33% (65)
3 29% (57)
2 9% (18)
1 3% (6)
Book ratings by Goodreads
Goodreads is the world's largest site for readers with over 50 million reviews. We're featuring millions of their reader ratings on our book pages to help you find your new favourite book. Close X