An Introduction to Geotechnical Engineering

An Introduction to Geotechnical Engineering

3.62 (24 ratings by Goodreads)
By (author)  , By (author)  , By (author) 

List price: US$123.98

Currently unavailable

Add to wishlist

AbeBooks may have this title (opens in new window).

Try AbeBooks

Description

An Introduction to Geotechnical Engineering, 2/e is a descriptive, elementary introduction to geotechnical engineering - with applications to civil engineering practice.
show more

Product details

  • Hardback | 816 pages
  • 193.04 x 233.68 x 35.56mm | 1,995.8g
  • Pearson
  • United States
  • English
  • 2nd edition
  • 0130317217
  • 9780130317216

Table of contents

Chapter 1 Introduction to Geotechnical Engineering1.1 Geotechnical Engineering1.2 The Unique Nature of Soil and Rock Materials1.3 Scope of This Book1.4 Historical Development of Geotechnical Engineering1.5 Suggested Approach to the Study of Geotechnical Engineering1.6 Notes on Symbols and Units 1.7 Some Comments on How to Study in GeneralProblems Chapter 2 Index and Classification Properties of Soils2.1 Introduction2.2 Basic Definitions and Phase Relations for Soils2.3 Solution of Phase Problems2.3.1 Submerged or Buoyant Density2.3.2 Unit Weight and Specific Gravity 2.4 Soil Texture2.5 Grain Size and Grain Size Distribution2.6 Particle Shape2.7 Atterberg Limits 2.7.1 Cone Liquid Limit2.7.2 One Point Liquid Limit Test2.7.3 Additional Comments on the Atterberg Limits2.8 Introduction To Soil Classification2.9 Unified Soil Classification System (USCS) 2.9.1 Visual-Manual Classification of Soils 2.9.2 What Else Can We Get From The LI-PI Chart? 2.9.3 Limitations of the USCS2.10 AASHTO Soil Classification System Problems Chapter 3 Geology, Landforms, and the Origin of Geo-Materials 3.1 Importance of Geology to Geotechnical Engineering 3.1.1 Geology 3.1.2 Geomorphology 3.1.3 Engineering Geology3.2 The Earth, Minerals, Rocks, and Rock Structure 3.2.1 The Earth 3.2.2 Minerals 3.2.3. Rocks 3.2.4. Rock Structure 3.3 Geologic Processes and Landforms 3.3.1 Geologic Processes and the Origin of Earthen Materials 3.3.2 Weathering 3.3.3. Gravity Processes 3.3.4. Surface Water Processes 3.3.5 Ice Processes and Glaciation 3.3.6 Wind Processes 3.3.7 Volcanic Processes 3.3.8 Groundwater Processes 3.3.9 Tectonic Processes 3.3.10 Plutonic Processes3.4 Sources of Geologic Information Problems Chapter 4 Clay Minerals, Soil and Rock Structures, and Rock Classification4.1Introduction 4.2 Products of Weathering4.3 Clay Minerals 4.3.1 The 1:1 Clay Minerals 4.3.2 The 2:1 Clay Minerals 4.3.3 Other Clay Minerals4.4 Identification of Clay Minerals And Activity4.5 Specific Surface 4.6 Interaction between Water and Clay Minerals 4.6.1 Hydration of Clay Minerals and the Diffuse Double Layer 4.6.2 Exchangeable Cations and Cation Exchange Capacity (CEC)4.7 Interaction of Clay Particles4.8 Soil Structure and Fabric of Fine Grained Soils 4.8.1 Fabrics of Fine Grained Soils 4.8.2 Importance of Microfabric and Macrofabric; Description Criteria4.9 Granular Soil Fabrics4.10 Soil Profiles, Soil Horizons, and Soil Taxonomy4.11 Special Soil Deposits 4.11.1 Organic soils, peats, and muskeg 4.11.2 Marine Soils 4.11.3 Waste Materials and Contaminated Sites4.12 Transitional Materials: Hard Soils vs. Soft Rocks4.13 Properties, Macrostructure, and Classification of Rock Masses 4.13.1 Properties of Rock Masses 4.13.2 Discontinuities in Rock4.13.3 Rock Mass Classification Systems Problems Chapter 5 Compaction and Stabilization of Soils 5.1 Introduction5.2 Compaction and Densification5.3 Theory of Compaction for Fine-Grained Soils 5.3.1 Process of Compaction 5.3.2 Typical Values; Degree of Saturation 5.3.3 Effect of Soil Type and Method of Compaction5.4 Structure of Compacted Fine-Grained Soils5.5 Compaction of Granular Soils 5.5.1 Relative or Index Density 5.5.2 Densification of Granular Deposits. 5.5.3 Rock Fills 5.6 Field Compaction Equipment and Procedures 5.6.1 Compaction of Fine-Grained Soils 5.6.2 Compaction of Granular Materials 5.6.3 Compaction Equipment Summary 5.6.4 Compaction of Rockfill5.7 Specifications and Compaction Control 5.7.1 Specifications 5.7.2 Compaction Control Tests 5.7.3 Problems with Compaction Control Tests 5.7.4 Most Efficient Compaction 5.7.5Overcompaction 5.7.6 Rockfill QA/QC 5.7.7 Compaction in Trenches5.8 Estimating Performance of Compacted Soils Problems Chapter 6 Hydrostatic Water in Soils and Rocks6.1 Introduction6.2 Capillarity 6.2.1 Capillary Rise and Capillary Pressures in Soils 6.2.2 Measurement of Capillarity; Soil-Water Characteristic Curve 6.2.3 Other Capillary Phenomena6.3 Groundwater Table and the Vadose Zone 6.3.1 Definition 6.3.2 Field Determination 6.4 Shrinkage Phenomena in Soils 6.4.1 Capillary Tube Analogy 6.4.2 Shrinkage Limit Test 6.4.3 Shrinkage Properties of Compacted Clays6.5 Expansive Soils and Rocks 6.5.1 Physical-Chemical Aspects 6.5.2 Identification and Prediction 6.5.3 Expansive Properties of Compacted Clays 6.5.4 Swelling Rocks6.6 Engineering Significance of Shrinkage and Swelling6.7 Collapsible Soils and Subsidence 6.8 Frost Action 6.8.1 Terminology, Conditions, and Mechanisms of Frost Action 6.8.2 Prediction and Identification of Frost Susceptible Soils 6.8.3 Engineering Significance of Frozen Ground 6.9 Intergranular or Effective Stress6.10 Vertical Stress Profiles 6.11 Relationship between Horizontal and Vertical Stresses Problems Chapter 7 Fluid Flow in Soils and Rock 7.1 Introduction7.2 Fundamentals of Fluid Flow7.3 Darcy's Law for Flow through Porous Media7.4 Measurement of Permeability or Hydraulic Conductivity 7.4.1 Laboratory and Field Hydraulic Conductivity Tests 7.4.2 Factors Affecting Laboratory and Field Determination of K 7.4.3 Empirical Relationships and Typical Values of K 7.5 Heads and One-Dimensional Flow7.6 Seepage Forces, Quicksand, and Liquefaction 7.6.1 Seepage Forces, Critical Gradient, and Quicksand 7.6.2 Quicksand Tank 7.6.3 Liquefaction7.7 Seepage and Flow Nets: Two-Dimensional Flow 7.7.1 Flow Nets 7.7.2 Quantity of Flow, Uplift Pressures, and Exit Gradients 7.7.3 Other Solutions to Seepage Problems 7.7.4 Anisotropic and Layered Flow7.8 Seepage towards Wells7.9 Seepage through Dams and Embankments 7.10 Control of Seepage and Filters 7.10.1 Basic Filtration Principles 7.10.2 Design of Graded Granular Filters 7.10.3 Geotextile Filter Design Concepts 7.10.4 FHWA Filter Design ProcedureProblems Chapter 8 Compressibility of Soil and Rock8.1 Introduction8.2 Components of Settlement8.3 Compressibility of Soils8.4 One-Dimensional Consolidation Testing8.5 Preconsolidation Pressure and Stress History 8.5.1 Normal Consolidation, Overconsolidation, and Preconsolidation Pressure 8.5.2 Determining the Preconsolidation Pressure 8.5.3 Stress History and Preconsolidation Pressure8.6 Consolidation Behavior of Natural and Compacted Soils8.7 Settlement Calculations 8.7.1 Consolidation Settlement of Normally Consolidated Soils 8.7.2 Consolidation Settlement of Overconsolidated Soils 8.7.3 Determining Cr and Cre8.8 Tangent Modulus Method8.9 Factors Affecting the Determination of scP8.10 Prediction of Field Consolidation Curves8.11 Soil Profiles8.12 Approximate Methods and Typical Values of Compression Indices8.13 Compressibility of Rock and Transitional Materials8.14 In Situ Determination f Compressibility Problems Chapter 9 Time Rate of Consolidation9.1 Introduction9.2 The Consolidation Process9.3 Terzaghi's One-Dimensional Consolidation Theory 9.3.1 Classic Solution for the Terzaghi Consolidation Equation 9.3.2 Finite Difference Solution for the Terzaghi Consolidation Equation9.4 Determination of the Coefficient of Consolidation Cv 9.4.1 Casagrande's Logarithm of Time Fitting Method 9.4.2 Taylor's Square Root of Time Fitting Method9.5 Determination of the Coefficient Of Permeability 9.6 Typical Values of the Coefficient Of Consolidation, Cv9.7 In Situ Determination of Consolidation Properties9.8 Evaluation of Secondary SettlementProblems Chapter 10 Stress Distribution and Settlement Analysis10.1 Introduction10.2 Settlement Analysis of Shallow Foundations 10.2.1 Components of Settlement 10.2.2 Steps in Settlement Analysis10.3 Stress Distribution 10.4 Immediate Settlement 10.5 Vertical Effective Overburden and Preconsolidation Stress Profiles 10.6 Settlement Analysis ExamplesProblems Chapter 11 The Mohr Circle, Failure Theories, and Strength Testing of Soil And Rocks11.1 Introduction11.2 Stress at a Point11.3 Stress-Strain Relationships and Failure Criteria11.4 The Mohr-Coulomb Failure Criterion 11.4.1 Mohr Failure Theory 11.4.2 Mohr-Coulomb Failure Criterion 11.4.3 Obliquity Relations 11.4.4 Failure Criteria for Rock11.5 Laboratory Tests for the Shear Strength of Soils and Rocks 11.5.1 Direct Shear Test 11.5.2 Triaxial Test 11.5.3 Special Laboratory Soils Tests 11.5.4 Laboratory Tests for Rock Strength 11.6 In Situ Tests for the Shear Strength of Soils and Rocks 11.6.1 Insitu Tests for Shear Strength of Soils 11.6.2 Field Tests for Modulus and Strength of Rocks Problems Chapter 12 An Introduction to Shear Strength of Soils and Rock 12.1 Introduction 12.2 Angle of Repose of Sands 12.3 Behavior of Saturated Sands during Drained Shear 12.4 Effect of Void Ratio and Confining Pressure on Volume Change 12.5 Factors that Affect the Shear Strength of Sands 12.6 Shear Strength of Sands Using In Situ Tests 12.6.1 SPT 12.6.2 CPT 12.6.3 DMT12.7 The Coefficient of Earth Pressure at Rest for Sands 12.8 Behavior of Saturated Cohesive Soils during Shear 12.9 Consolidated-Drained Stress-Deformation and Strength Characteristics 12.9.1 Consolidated-Drained (CD) Test Behavior 12.9.2 Typical Values of Drained Strength Parameters for Saturated 12.9.3 Use of CD Strength in Engineering Practice12.10 Consolidated-Undrained Stress-Deformation and Strength Characteristics 12.10.1 Consolidated-Undrained (CU) Test Behavior 12.10.2 Typical Value of the Undrained Strength Parameters 12.10.3 Use of CU Strength In Engineering Practice12.11 Unconsolidated-Undrained Stress-Deformation and Strength Characteristics 12.11.1 Unconsolidated-Undrained (UU) Test Behavior 12.11.2 Unconfined Compression Test 12.11.3 Typical Values of UU and UCC Strengths 12.11.4 Other Ways to Determine the Undrained Shear Strength 12.11.5 Use of UU Strength in Engineering Practice12.12 Sensitivity 12.13 The Coefficient of Earth Pressure at Rest for Clays 12.14 Strength of Compacted Clays 12.15 Strength of Rocks and Transitional Materials 12.16 Multistage Testing 12.17 Introduction to Pore Pressure Parameters Problems Chapter 13 Advanced Topics in Shear Strength of Soils and Rocks13.1 Introduction 13.2 Stress Paths 13.3 Pore Pressure Parameters for Different Stress Paths 13.4 Stress Paths during Undrained Loading - Normally and Lightly Overconsolidated Clays 13.5 Stress Paths during Undrained Loading - Heavily Overconsolidated Clays 13.6 Applications of Stress Paths to Engineering Practice 13.7 Critical State Soil Mechanics 13.8 Modulus and Constitutive Models for Soils 13.8.1 Modulus of Soils 13.8.2 Constitutive Relations 13.8.3 Soil Constitutive Modeling 13.8.4 Failure Criteria for Soils 13.8.5 Classes of Constitutive Models for Soils 13.8.6 The Hyperbolic (Duncan-Chang) Model13.9 Fundamental Basis of the Drained Strength of Sands 13.9.1 Basics of Frictional Shear Strength 13.9.2 Stress-Dilatancy and Energy Corrections 13.9.3 Curvature of the Mohr Failure Envelope13.10 Behavior of Saturated Sands in Undrained Shear 13.10.1 Consolidated-Undrained Behavior 13.10.2 Using CD Tests to Predict CU Results 13.10.3 Unconsolidated-Undrained Behavior 13.10.4 Strain Rate Effects in Sands 13.11Plane Strain Behavior of Sands 13.12 Residual Strength of Soils 13.12.1 Drained Residual Shear Strength of Clays 13.12.2 Residual Shear Strength of Sands13.13 Stress-Deformation and Shear Strength of Clays: Special Topics 13.13.1 Definition of Failure in CU Effective Stress Tests 13.13.2 Hvorslev Strength Parameters 13.13.3 The tF/scVo Ratio, Stress History, and Jurgenson-Rutledge Hypothesis 13.13.4 Consolidation Methods to Overcome Sample Disturbance 13.13.5 Anisotropy 13.13.6 Plane Strain Strength of Clays 13.13.7 Strain Rate Effects 13.14 Strength of Unsaturated Soils 13.14.1Matric Suction in Unsaturated Soils 13.14.2 The Soil-Water Characteristic Curve 13.14.3 The Mohr-Coulomb Failure Envelope for Unsaturated Soils 13.14.4 Shear Strength Measurement in Unsaturated Soils13.15 Properties of Soils under Dynamic Loading 13.15.1 Stress-Strain Response of Cyclically Loaded Soils 13.15.2 Measurement of Dynamic Soil Properties 13.15.3 Empirical Estimates of Gmax, Modulus Reduction, and Damping 13.15.4 Strength of Dynamically Loaded Soils13.16 Failure Theories for Rock Problems
show more

Review quote

"The authors do a nice job in presenting significant discussion in theory and background information. I prefer this approach to the more mechanical cookbook approach in which equations and methods are emphasized over theory. If the students are committed and dedicated to reading the text, they will find a wealth of useful information that compliments classroom lectures, and homework problems."-Robert Mokwa, MONTANA STATE UNIVERSITY "The text provides information that goes beyond a typical undergraduate soil mechanics course. In fact I tell my students that `this is a text that you can retain for future use and reference, whether you choose to go to graduate school or engineering practice.' Plus, it's written with a good sense of humor."-Khaled Sobhan, FLORIDA ATLANTIC UNIVERSITY "Writing is excellent, engaging, and helpful. It anticipates well the questions forming in the average student's mind."-Trevor Smith, PORTLAND STATE UNIVERSITY
show more

Rating details

24 ratings
3.62 out of 5 stars
5 29% (7)
4 33% (8)
3 17% (4)
2 12% (3)
1 8% (2)
Book ratings by Goodreads
Goodreads is the world's largest site for readers with over 50 million reviews. We're featuring millions of their reader ratings on our book pages to help you find your new favourite book. Close X