Integration of Passive RF Front End Components in SoCs

Integration of Passive RF Front End Components in SoCs

  • Electronic book text
By (author)  , By (author) 

List price: US$91.99

Currently unavailable

We can notify you when this item is back in stock

Add to wishlist

AbeBooks may have this title (opens in new window).

Try AbeBooks


Examining the most important developments in highly integrated wireless RF front ends, this book describes and evaluates both active and passive solutions for on-chip high-Q filtering, and explores M-phase filters in depth. An accessible step-by-step approach is used to introduce everything an RF designer needs to know about these filters, including their various forms, principles of operation, and their performance against implementation-related imperfections. Real-world examples are described in depth, and detailed mathematical analyses demonstrate the practical quantification of pertinent circuit more

Product details

  • Electronic book text
  • Cambridge University Press (Virtual Publishing)
  • Cambridge, United Kingdom
  • 110 b/w illus. 3 tables
  • 1139602640
  • 9781139602648

Table of contents

1. Introduction to highly integrated and tunable RF receiver front ends: 1.1. Introduction; 1.2. Front-end integration challenges and system requirements; 1.3. 2G receiver SAW elimination; 1.4. 3G receiver SAW elimination; 1.5. Summary and conclusions; 2. Active blocker-cancellation techniques in receivers: 2.1. Introduction; 2.2. Concept of receiver translational loop; 2.3. Nonideal effects; 2.4. Circuit implementations; 2.5. Measurement results; 2.6. Feedback blocker-cancellation techniques; 2.7. Summary and conclusions; 3. Impedance transformation: Introduction to the simplest on-chip SAW filter; 3.1. Introduction; 3.2. Impedance transformation by a 50% passive mixer; 3.3. Application as on-chip SAW filter; 3.4. Impact of harmonics on the sharpness of the proposed filter; 3.5. Differential implementation; 3.6. Summary and conclusions; 4. Four-phase high-Q bandpass filters: 4.1. Introduction; 4.2. Impedance transformation by a four-phase filter; 4.3. Differential implementation of four-phase high-Q bandpass filter; 4.4. Application as an on-chip SAW filter; 4.5. Impact of harmonics on the sharpness of the proposed filter; 4.6. Four-phase high-Q bandpass filter with a complex baseband impedance; 4.7. Four-phase high-Q bandpass filter with quadrature RF inputs; 4.8. Harmonic upconversion and downconversion; 4.9. A SAW-less receiver with on-chip four-phase high-Q bandpass filters; 4.10. Summary and conclusions; 5. M-phase high-Q bandpass filters: 5.1. Introduction; 5.2. Impedance transformation by M-phase filters; 5.3. Differential implementation of M-phase high-Q filter; 5.4. Application as an on-chip SAW filter; 5.5. Impact of harmonics on the sharpness of the M-phase bandpass filter; 5.6. M-phase high-Q filter with complex baseband impedances; 5.7. M-phase high-Q bandpass filter with quadrature RF inputs; 5.8. M-phase high-Q bandpass filter with N-phase complex bandpass filters; 5.9. Harmonic upconversion; 5.10. Summary and conclusions; 6. Design of a superheterodyne receiver using M-phase filters: 6.1. Introduction; 6.2. Proposed superheterodyne receiver architecture; 6.3. Design and implementation of the receiver chain; 6.4. Measurement results; 6.5. Summary and conclusions; 7. Impact of imperfections on the performance of M-phase filters: 7.1. Introduction; 7.2. Mathematical background; 7.3. LO phase noise; 7.4. Second-order nonlinearity in the switches of the bandpass filter; 7.5. Quadrature error in the original 50% duty-cycle clock phases; 7.6. Harmonic downconversion; 7.7. Thermal noise of switches; 7.8. Parasitic capacitors of switches; 7.9. Switch charge injection; 7.10. Mismatches; 7.11. Summary and conclusions; 8. M-phase filtering and duality: 8.1. Introduction; 8.2. Dual of an electrical circuit; 8.3. Dual of M-phase filter; 8.4. Dual of M-phase high-Q filter with complex baseband impedances; 8.5. Summary and conclusions; Appendix; References; more

About Hooman Darabi

Hooman Darabi is a Senior Technical Director and Fellow of Broadcom Corporation, California, and an Adjunct Professor at the University of California, Irvine. He is an IEEE Solid State Circuits Society distinguished lecturer. Ahmad Mirzaei is a Senior Principal Scientist within the Mobile and Wireless division of Broadcom Corporation, California. His research interests involve analog and RF IC design for wireless more