Geometry of Lie Groups

Geometry of Lie Groups

4 (1 rating by Goodreads)
By (author)  , By (author) 

Free delivery worldwide

Available. Dispatched from the UK in 3 business days
When will my order arrive?

Description

This book is the result of many years of research in Non-Euclidean Geometries and Geometry of Lie groups, as well as teaching at Moscow State University (1947- 1949), Azerbaijan State University (Baku) (1950-1955), Kolomna Pedagogical Col- lege (1955-1970), Moscow Pedagogical University (1971-1990), and Pennsylvania State University (1990-1995). My first books on Non-Euclidean Geometries and Geometry of Lie groups were written in Russian and published in Moscow: Non-Euclidean Geometries (1955) [Ro1] , Multidimensional Spaces (1966) [Ro2] , and Non-Euclidean Spaces (1969) [Ro3]. In [Ro1] I considered non-Euclidean geometries in the broad sense, as geometry of simple Lie groups, since classical non-Euclidean geometries, hyperbolic and elliptic, are geometries of simple Lie groups of classes Bn and D , and geometries of complex n and quaternionic Hermitian elliptic and hyperbolic spaces are geometries of simple Lie groups of classes An and en. [Ro1] contains an exposition of the geometry of classical real non-Euclidean spaces and their interpretations as hyperspheres with identified antipodal points in Euclidean or pseudo-Euclidean spaces, and in projective and conformal spaces. Numerous interpretations of various spaces different from our usual space allow us, like stereoscopic vision, to see many traits of these spaces absent in the usual space.
show more

Product details

  • Hardback | 398 pages
  • 156 x 234 x 27.94mm | 1,690g
  • Dordrecht, Netherlands
  • English
  • 1997 ed.
  • XVIII, 398 p.
  • 0792343905
  • 9780792343905

Table of contents

Preface. 0. Structures of Geometry. I. Algebras and Lie Groups. II. Affine and Projective Geometries. III. Euclidean, Pseudo-Euclidean, Conformal and Pseudoconformal Geometries. IV. Elliptic, Hyperbolic, Pseudoelliptic, and Pseudohyperbolic Geometries. V. Quasielliptic, Quasihyperbolic, and Quasi-Euclidean Geometries. VI. Symplectic and Quasisymplectic Geometries. VII. Geometries of Exceptional Lie Groups. Metasymplectic Geometries. References. Index of Persons. Index of Subjects.
show more

Rating details

1 ratings
4 out of 5 stars
5 0% (0)
4 100% (1)
3 0% (0)
2 0% (0)
1 0% (0)
Book ratings by Goodreads
Goodreads is the world's largest site for readers with over 50 million reviews. We're featuring millions of their reader ratings on our book pages to help you find your new favourite book. Close X