Fractals Everywhere

Fractals Everywhere

4.03 (53 ratings by Goodreads)

List price: US$54.95

Currently unavailable

Add to wishlist

AbeBooks may have this title (opens in new window).

Try AbeBooks

Description

This volume is the revised second edition of the original book, published in 1988. It includes additional problems and tools emphasizing fractal applications, as well as an all-new answer key to the text exercises. The revision incorporates new chapters on vector recurrent iterated function systems and application of fractals. It also contains an extended chapter on dynamical systems. Input from advisors and potential adopters should make it more suitable for use as a textbook. This book should be of interest to mathematicians and computer scientists, upper-level undergraduate students and graduate students at universities offering courses in chaos and fractals.
show more

Product details

  • Hardback | 550 pages
  • 148.6 x 214.1 x 18.5mm | 358.34g
  • Ap Professional
  • Oxford, United Kingdom
  • English
  • Revised
  • 2nd Revised edition
  • colour plates, references, index
  • 0120790610
  • 9780120790616

Table of contents

Part 1 Metric spaces, equivalent spaces, classification of subsets, and the space of fractals: spaces, metric spaces; cauchy sequences; limit points, closed sets, perfect sets and complete metric spaces; compact sets, bounded sets; open sets, interiors and boundaries; connected sets; disconnected sets and pathwise connected sets; the metric space (H(X),h) - the place where fractals live; the completeness of the space of fractals; additional theorems about metric spaces. Part 2 Transformations on metric spaces, contraction mappings and the construction of fractals: transformations on the real line; affine transformations in the Euclidean plane; mobius transformations on the Riemann sphere; analytic transformations, how to change coordinates; the contraction mapping theorem; contraction mappings on the space of fractals, two algorithms for computing fractals from iterated function systems; condensation sets; how to make fractal models with the help of the collage theorem; blowing in the wind - continuous dependence of fractals on parameters. Part 3 Chaotic dynamics on fractals: the addresses of points on fractals; continuous transformations from code space to fractals; introduction to dynamical systems; dynamics on fractals - or how to compute orbits by looking at pictures; equivalent dynamical systems; the shadow of deterministic dynamics; the meaningfulness of inaccurately computed orbits is established by means of a shadowing theorem; chaotic dynamics on fractals. Part 4 Fractal dimension: fractal dimension; the theoretical determination of the fractal dimension; the experimental determination of the fractal dimension; Hausdorff-Besicovitch dimension. Part 5 Fractal interpolation: introduction - applications for fractal functions; fractal interpolation functions; the fractal dimension of fractal interpolation functions; hidden variable fractal interpolation; space - filling curves. Part 6 Julia sets: the escape time algorithm for computing pictures of IFS attractors and Julia sets; iterated function systems whose attractors are Julia sets; the application of Julia set theory to Newton's method; a rich source of fractals - invariant sets of continuous open mappings. Part 7 Parameter spaces and mandelbrot sets: the idea of a parameter space - a map of fractals; Mandelbrot sets for pairs of transformations; the Mandelbrot set for Julia sets; how to make maps of families of fractals using escape times. (Part contents).
show more

Rating details

53 ratings
4.03 out of 5 stars
5 36% (19)
4 42% (22)
3 15% (8)
2 6% (3)
1 2% (1)
Book ratings by Goodreads
Goodreads is the world's largest site for readers with over 50 million reviews. We're featuring millions of their reader ratings on our book pages to help you find your new favourite book. Close X