Explorations in Topology

Explorations in Topology : Map Coloring, Surfaces and Knots

3 (1 rating by Goodreads)
By (author) 

Free delivery worldwide

Available. Dispatched from the UK in 2 business days
When will my order arrive?


Explorations in Topology, Second Edition, provides students a rich experience with low-dimensional topology (map coloring, surfaces, and knots), enhances their geometrical and topological intuition, empowers them with new approaches to solving problems, and provides them with experiences that will help them make sense of future, more formal topology courses. The book's innovative story-line style models the problem-solving process, presents the development of concepts in a natural way, and engages students in meaningful encounters with the material. The updated end-of-chapter investigations provide opportunities to work on many open-ended, non-routine problems and, through a modified "Moore method," to make conjectures from which theorems emerge. The revised end-of-chapter notes provide historical background to the chapter's ideas, introduce standard terminology, and make connections with mainstream mathematics. The final chapter of projects provides ideas for continued research. Explorations in Topology, Second Edition, enhances upper division courses and is a valuable reference for all levels of students and researchers working in topology.
show more

Product details

  • Hardback | 332 pages
  • 149.86 x 228.6 x 25.4mm | 612.35g
  • United States
  • English
  • 2nd edition
  • 0124166482
  • 9780124166486

Review quote

"...the tasks that are asked of the reader are challenging and require clear thinking. This text could be an exiting tool for self study or a non-traditional course that is not just based on lectures."--Zentralblatt MATH, Sep-14 "Each chapter ends with a section marked "Notes", typically about two pages long, which gives a somewhat broader perspective of the material covered in that chapter, typically placing each topic in historical context, and sometimes giving precise definitions and statements of theorems."--MAA.org, May 4, 2014
show more

Table of contents

CHAPTER 1: ACME makes maps and considers coloring them CHAPTER 2: ACME adds tours to its services CHAPTER 3: ACME collects data from maps CHAPTER 4: ACME gathers more data, proves a theorem, and returns to coloring maps CHAPTER 5: ACME's lawyer proves the four color conjecture CHAPTER 6: ACME adds doughnuts to its repertoire CHAPTER 7: ACME considers the Mobius strip CHAPTER 8: ACME creates new worlds --- Klein bottle and other surfaces CHAPTER 9: ACME makes order out of chaos --- surface sum and Euler numbers CHAPTER 10: ACME classifies surfaces CHAPTER 11: ACME encounters the fourth dimension CHAPTER 12: ACME colors maps on surfaces --- Heawood's estimate CHAPTER 13: ACME gets all tied up with knots CHAPTER 14: Where to go from here --- Projects
show more

Rating details

1 ratings
3 out of 5 stars
5 0% (0)
4 0% (0)
3 100% (1)
2 0% (0)
1 0% (0)
Book ratings by Goodreads
Goodreads is the world's largest site for readers with over 50 million reviews. We're featuring millions of their reader ratings on our book pages to help you find your new favourite book. Close X