Engineering Mechanics-Dynamics Principles

Engineering Mechanics-Dynamics Principles

By (author)  , By (author) 

List price: US$87.00

Currently unavailable

Add to wishlist

AbeBooks may have this title (opens in new window).

Try AbeBooks


More than just a book, this text is part of a system to teach engineering mechanics, a system comprised of three components 1) this core principles book, 2) algorithmic problem material available online, and 3) a course management system to track and monitor student progress. By using this system, instructors and their students will benefit from increased flexibility in the ability to assign and grade problems, and the ability to make sure each student works a "unique" version of a problem, all coming at a lower price and in a smaller more

Product details

  • Hardback | 432 pages
  • 200 x 248 x 18mm | 798.34g
  • Pearson Education (US)
  • Pearson
  • United States
  • English
  • 3rd edition
  • 0130082082
  • 9780130082084

Table of contents

1. Introduction. Engineering and Mechanics. Learning Mechanics. Fundamental Concepts. Units. 2. Motion of a Point. Position, Velocity, and Acceleration. Straight-Line Motion. Curvilinear Motion. Relative Motion. 3. Force, Mass, and Acceleration. Newton's Second Law. Equation of Motion for the Center at Mass. Inertial Reference Frames. Applications. Orbital Mechanics. 4. Energy Methods. Work and Kinetic Energy. Principle of Work and Energy. Work and Power. Work Done by Particular Forces. Potential Energy Conservation of Energy. Conservative Forces. 5. Momentum Methods. Principle of Impulse and Momentum. Conservation of Linear Momentum. Impacts. Angular Momentum. Mass Flows. 6. Planar Kinematics of Rigid Bodies. Rigid Bodies and Types of Motion. Rotation about a Fixed Axis. General Motions: Velocities. General Motions: Accelerations. Sliding Contacts. Moving Reference Frames. 7. Planar Dynamics of Rigid Bodies. Preview of the Equations of Motion. Momentum Principles for a System of Particles. Derivation of the Equations of Motion. Applications. Appendix: Moments of Inertia. 8. Energy and Momentum In Rigid Body Dynamics. Principle of Work and Energy. Work and Potential Energy. Power. Principles of Impulse and Momentum. Impacts. 9. Three-Dimensional Kinematics and Dynamics of Rigid Bodies. Kinematics. Angular Momentum. Moments and Products of Inertia. Euler's Equations. Eulerian Angles. 10. Vibrations. Conservative Systems. Damped Vibrations. Forced more

About Allan Bedford

Anthony Bedford is Professor of Aerospace Engineering and Engineering Mechanics at the University of Texas at Austin. He received his B.S. degree at the University of Texas at Austin, his M.S. degree at the California Institute of Technology, and his Ph.D. degree at Rice University in 1967. He has industrial experience at Douglas Aircraft Company and at TRW, where he did structural dynamics and trajectory analyses for the Apollo program. He has been on the faculty of the University of Texas at Austin since 1968. Dr. Bedford's main professional activity has been education and research in engineering mechanics. He has been principal investigator on grants from the National Science Foundation and the Office of Naval Research, and from 1973 until 1983 was a consultant to Sandia National Laboratories, Albuquerque, New Mexico. His other books include Hamilton's Principle in Continuum Mechanics, Introduction to Elastic Wave Propagation (with D.S. Drumheller), and Mechanics of Materials (with K.M. Liechti). Wallace T. Fowler holds the Paul D. and Betty Robertson Meek Professorship in Engineering in the Department of Aerospace Engineering and Engineering Mechanics at the University of Texas at Austin. Dr. Fowler received his B.A., M.S., and Ph.D. degrees at the University of Texas at Austin, and has been on the faculty there since 1965. During Fall 1976, he was on the staff of the United States Air Force Test Pilot School, Edwards Air Force Base, California, and in 1981-1982 he was a visiting professor at the United States Air Force Academy. Since 1991 he has been Associate Director of the Texas Space Grant Consortium. Dr. Fowler's areas of teaching and research are dynamics, orbital mechanics, and spacecraft mission design. He is author or coauthor of technical papers on trajectory optimization, attitude dynamics, and space mission planning and has also published papers on the theory and practice of engineering teaching. He has received numerous teaching awards including the Chancellor's Council Outstanding Teaching Award, the General Dynamics Teaching Excellence Award, the Halliburton Education Foundation Award of Excellence, the ASEE Fred Merryfield Design Award, and the AIAA-ASEE Distinguished Aerospace Educator Award. He is a member of the Academy of Distinguished Teachers at the University of Texas at Austin. He is a licensed professional engineer, a member of several technical societies, and a Fellow of both the American Institute of Aeronautics and Astronautics and the American Society for Engineering Education. In 2000-2001, he served as president of the American Society for Engineering more