Emerging Paradigms in Machine Learning
13%
off

Emerging Paradigms in Machine Learning

3 (1 rating by Goodreads)
Edited by  , Edited by  , Edited by 

Free delivery worldwide

Available. Dispatched from the UK in 2 business days
When will my order arrive?

Expected to be delivered to the United States by Christmas Expected to be delivered to the United States by Christmas

Description

This book presents fundamental topics and algorithms that form the core of machine learning (ML) research, as well as emerging paradigms in intelligent system design. The multidisciplinary nature of machine learning makes it a very fascinating and popular area for research. The book is aiming at students, practitioners and researchers and captures the diversity and richness of the field of machine learning and intelligent systems. Several chapters are devoted to computational learning models such as granular computing, rough sets and fuzzy sets An account of applications of well-known learning methods in biometrics, computational stylistics, multi-agent systems, spam classification including an extremely well-written survey on Bayesian networks shed light on the strengths and weaknesses of the methods. Practical studies yielding insight into challenging problems such as learning from incomplete and imbalanced data, pattern recognition of stochastic episodic events and on-line mining of non-stationary data streams are a key part of this book.
show more

Product details

  • Hardback | 498 pages
  • 155 x 235 x 33.02mm | 939g
  • Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Berlin, Germany
  • English
  • 2013 ed.
  • XXII, 498 p.
  • 3642286984
  • 9783642286988

Back cover copy

This book presents fundamental topics and algorithms that form the core of machine learning (ML) research, as well as emerging paradigms in intelligent system design. The multidisciplinary nature of machine learning makes it a very fascinating and popular area for research. The book is aiming at students, practitioners and researchers and captures the diversity and richness of the field of machine learning and intelligent systems. Several chapters are devoted to computational learning models such as granular computing, rough sets and fuzzy sets An account of applications of well-known learning methods in biometrics, computational stylistics, multi-agent systems, spam classification including an extremely well-written survey on Bayesian networks shed light on the strengths and weaknesses of the methods. Practical studies yielding insight into challenging problems such as learning from incomplete and imbalanced data, pattern recognition of stochastic episodic events and on-line mining of non-stationary data streams are a key part of this book.
show more

Table of contents

From the content: Emerging Paradigms in Machine Learning: An Introduction.- Extensions of Dynamic Programming as a New Tool for Decision Tree Optimization.- Optimised information abstraction in granular Min/Max clustering.- Mining Incomplete Data-A Rough Set Approach.- Roles Played by Bayesian Networks in Machine Learning: An Empirical Investigation.
show more

Rating details

1 rating
3 out of 5 stars
5 0% (0)
4 0% (0)
3 100% (1)
2 0% (0)
1 0% (0)
Book ratings by Goodreads
Goodreads is the world's largest site for readers with over 50 million reviews. We're featuring millions of their reader ratings on our book pages to help you find your new favourite book. Close X