An Elementary Treatise on Precision of Measurement and Laboratory Exercises in Mechanics and Optics

An Elementary Treatise on Precision of Measurement and Laboratory Exercises in Mechanics and Optics

By (author) 

List price: US$15.84

Currently unavailable

Add to wishlist

AbeBooks may have this title (opens in new window).

Try AbeBooks

Description

This historic book may have numerous typos and missing text. Purchasers can usually download a free scanned copy of the original book (without typos) from the publisher. Not indexed. Not illustrated. 1922 edition. Excerpt: ...K' in terms of m, r, and R; and compare this result with that obtained above. To derive an expression for K by calculus' first find an expression for the area da between the dotted circles in Fig. 18; second find an expression for the mass dm of the portion of the ring'or disk which lies between the dotted circles in terms of area do, the area 'rr(R2--r2) of the ring, and the mass M of the ring; third, substitute this expression for dm in d K =x2.dm; and fourth, integrate d K = x2. dm between the limits x= r and x= R. EXPERIMENT 16 MOMENT OF INERTIA OF A BODY BY MEANS OF ' THE BIFILAR PENDULUM Figs. 19 and 20 show a box A and a bar B suspended by two fine wires ww which are l feet long and s feet apart. This arrangement is called a bifilar torsion pendulum. When the suspended body is turned through an angle cents about the central vertical line V in Fig. 20 the two suspending wires exert a (I " recovery torque T on the body, this recovery'" torque is proportional to cents if the angle 1 is small, and the factor k' in the equation T=--k'cents is called the coeflicient of torsional stiflness of the bifilar suspension. Proposition. The value of k' is: where s and l are the distances shown in Fig. 20, m is the mass of the box A and stirrup, M is the mass of bar B, and g is the acceleration of gravity (32.2 feet per second per second or 980 centimeters per second per second). Proof. Imagine the box A to be turned through a very small angle of cents radians about the axis V in Fig. 20. Then the points p and q in Fig. 20 will move towards and away from the reader respectively, and the distance each will move is-5X4, as shown in the diagram DD of Fig. 19, which shows front and back wiresshow more

Product details

  • Paperback | 28 pages
  • 189 x 246 x 2mm | 68g
  • Rarebooksclub.com
  • United States
  • English
  • black & white illustrations
  • 1236803973
  • 9781236803979