Analysis for Time-to-Event Data under Censoring and Truncation

Analysis for Time-to-Event Data under Censoring and Truncation

By (author) 

Free delivery worldwide

Available. Dispatched from the UK in 1 business day
When will my order arrive?

Description

Survival Analysis for Bivariate Truncated Data provides readers with a comprehensive review on the existing works on survival analysis for truncated data, mainly focusing on the estimation of univariate and bivariate survival function. The most distinguishing feature of survival data is known as censoring, which occurs when the survival time can only be exactly observed within certain time intervals. A second feature is truncation, which is often deliberate and usually due to selection bias in the study design.

Truncation presents itself in different ways. For example, left truncation, which is often due to a so-called late entry bias, occurs when individuals enter a study at a certain age and are followed from this delayed entry time. Right truncation arises when only individuals who experienced the event of interest before a certain time point can be observed. Analyzing truncated survival data without considering the potential selection bias may lead to seriously biased estimates of the time to event of interest and the impact of risk factors.
show more

Product details

  • Paperback | 102 pages
  • 216 x 276 x 7.62mm | 181.44g
  • Academic Press Inc
  • San Diego, United States
  • English
  • black & white illustrations
  • 0128054808
  • 9780128054802

Table of contents

Chapter 1: Introduction

Chapter 2: Survival analysis for univariate truncated data

Chapter 3: Bivariate estimation with truncated survival data

Chapter 4: Accelerated failure time model for truncated and censored survival data

Chapter 5: Recent advances for truncated survival data
show more

Review Text

"...an overview of recent developments in surviving analysis under truncation, especially for bivariate survival analysis...recommended to help statisticians, epidemiologists, medical researchers, and actuaries who need to understand the mechanism of selection bias." -- Zentralblatt MATH
show more

Review quote

"...an overview of recent developments in surviving analysis under truncation, especially for bivariate survival analysis...recommended to help statisticians, epidemiologists, medical researchers, and actuaries who need to understand the mechanism of selection bias." --Zentralblatt MATH
show more

About Hongsheng Dai

Hongsheng Dai is a Lecturer in Statistics at the University of Essex, UK Huan Wang is a Statistician and Epidemiologist, at the Dundee Epidemiology and Biostatistics Unit, Population Health Sciences, at the University of Dundee, UK. He received his BSc in Mathematics and Applied Mathematics, from the Harbin Institute of Technology, P.R China. He received his MSc in Applied Statistics from Lancaster University, U.K and completed his PhD in Mathematic Sciences at the University of Brighton, UK.
show more