Air Pollution Meteorology and Dispersion

Air Pollution Meteorology and Dispersion

3.33 (3 ratings by Goodreads)
By (author) 

Free delivery worldwide

Available. Dispatched from the UK in 4 business days
When will my order arrive?

Description

Air Pollution Meteorology and Dispersion provides a concise yet thorough review of the basic theories, models, experiments, and observations of pollutant dispersal in the atmosphere. It offers the theoretical and empirical bases of frequently used dispersion models while emphasizing the limitations and uncertainties inherent in these models. Organized into twelve chapters, the material is presented in order of increasing difficulty. The first half of the book treats the basic tenets of air pollution modeling; the second half deals with the more detailed theoretical and observational aspects of dispersion. Sufficient background material on atmospheric structure, dynamics, and circulation systems and their importance to atmospheric dispersion is included for students who do not yet have a strong meteorological background. Turbulence and diffusion theories, such as gradient transport, statistical, and similarity theories, as well as analytical and numerical dispersion and air quality models, are also discussed. Problems and exercises are included in each chapter, making this an ideal text for undergraduate and graduate courses in atmospheric science and mechanical engineering.show more

Product details

  • Hardback | 320 pages
  • 182.9 x 256.5 x 20.3mm | 748.44g
  • Oxford University Press Inc
  • New York, United States
  • English
  • numerous line figures
  • 0195073983
  • 9780195073980
  • 1,986,849

About S. Pal Arya

S. Pal Arya is Professor of Meteorology in the Department of Marine, Earth, and Atmospheric Sciences at North Carolina State University, Raleigh. Well known for his research in the areas of environmental fluid mechanics, atmospheric boundary layer, turbulence and dispersion, he has published many articles in scientific journals. Arya is also the author of Introduction to Micrometeorology (1988) and chapters in other books on meterology. He is a Fellow of the American Meteorological Society and American Association for the Advancement of Science and a member of the American Geophysical Union.show more

Table of contents

Preface ; Acknowledgments ; 1. INTRODUCTION TO AIR POLLUTION ; 1.1 The Air Pollution Problem ; 1.2 Sources of Air Pollution ; 1.3 Air Pollutants ; 1.4 Effects of Air Pollution ; 1.5 Regulatory Control of Air Pollution ; 2. ATMOSPHERIC STRUCTURE AND DYNAMICS ; 2.1 Introduction ; 2.2 Composition and Thermal Structure of the ; Atmosphere ; 2.3 State Variables and Thermodynamics ; 2.4 Atmospheric Stability ; 2.5 Conservation Laws and Atmospheric Dynamics ; 2.6 Large-scale Inviscid Flows ; 2.7 Small-scale Viscous Flows ; 2.8 Applications ; 3. ATMOSPHERIC SYSTEMS AND POLLUTANT TRANSPORT ; 3.1 Introduction ; 3.2 Macroscale Systems ; 3.3 Synoptic Weather Systems ; 3.4 Mesoscale Systems ; 3.5 Microscale Systems ; 4. MICROMETEOROLOGY AND PLANETARY BOUNDARY LAYER ; 4.1 Introduction and Definitions ; 4.2 Earth-Atmosphere Exchange Processes ; 4.3 Vertical Distribution of Thermodynamic Variables ; 4.4 Vertical Distribution of Winds in the PBL ; 4.5 Turbulence ; 4.6 Gradient-transport Theories ; 4.7 Similarity Theories ; 4.8 Boundary-layer Parameterization for Dispersion ; APPLICATIONS ; 5. STATISTICAL DESCRIPTION OF ATMOSPHERIC TURBULENCE ; 5.1 Reynolds Averaging ; 5.2 Probability Functions ; 5.3 Autocorrelation Functions ; 5.4 Spectrum Functions ; 5.5 Taylor's Hypothesis ; 5.6 Statistical Theory of Turbulence ; 5.7 Observed Spectra and Scales ; 5.8 Effects of Smoothing and Finite Sampling ; 5.9 Lagrangian Description of Turbulence ; 5.10 Parameterization of Turbulence for Diffusion Applications ; 6. GRADIENT TRANSPORT THEORIES ; 6.1 Eulerian Approach to Describing Diffusion ; 6.2 Mass Conservation and Diffusion Equations ; 6.3 Molecular Diffusion ; 6.4 Turbulent Diffusion ; 6.5 Constant K (Fickian Diffusion) - Theory ; 6.6 Variable K-Theory ; 6.7 Limitations of Gradient Transport Theories ; 6.8 Experimental Verification of K-Theories ; 6.9 Applications of K-Theories to Atmospheric Dispersion ; 7. STATISTICAL THEORIES OF DIFFUSION ; 7.1 Lagrangian Approach to Describing Diffusion ; 7.2 Statistical Theory of Absolute Diffusion ; 7.3 Plume Diffusion from Continuous Sources ; 7.4 Statistical Theory of Relative Diffusion ; 7.5 Puff Diffusion from Instantaneous Releases ; 7.6 Fluctuating Plume Models ; 7.7 Experimental Verification of Statistical Theories ; 7.8 Applications to Atmospheric Dispersion and Limitations ; 8. SIMILARITY THEORIES OF DISPERSION ; 8.1 Dispersion in Stratified Shear Flows ; 8.2 Lagrangian Similarity Theory for the Neutral Surface Layer ; 8.3 Lagrangian Similarity Theory for the Stratified Surface Layer ; 8.4 The Mixed-layer Similarity Theory ; 8.5 Experimental Verification of Similarity Theories ; 8.6 Applications to Dispersion in the PBL ; 8.7 Limitations of Similarity Theories ; 9. GAUSSIAN DIFFUSION MODELS ; 9.1 Basis and Justification for Gaussian Models ; 9.2 Gaussian Plume and Puff Diffusion Models ; 9.3 Diffusion Experiments ; 9.4 Empirical Dispersion Parameterization Schemes ; 9.5 Further Improvements in Dispersion Parameterization ; 9.6 The Maximum Ground-Level Concentration ; 9.7 Model Evaluations and Uncertainties ; 9.8 Limitations of Gaussian Diffusion Models ; 9.9 Practical Applications of Gaussian Diffusion Models ; 10. PLUME RISE, SETTLING, AND DEPOSITION ; 10.1 Momentum and Buoyancy Effects of Release ; 10.2 Plume-rise Theory and Observations ; 10.3 Gravitational Settling of Particles ; 10.4 Dry Deposition ; 10.5 Dispersion-Deposition Models ; 10.6 Applications ; 11. NUMERICAL DISPERSION MODELS ; 11.1 Introduction ; 11.2 Short-range Gradient Transport Models ; 11.3 Turbulence Kinetic Energy Models ; 11.4 Higher Order Closure Models ; 11.5 Large-eddy Simulations ; 11.6 Lagrangian Stochastic Models ; 12. URBAN AND REGIONAL AIR QUALITY MODELS ; 12.1 Introduction ; 12.2 Components of an Air Quality Model ; 12.3 Urban Diffusion and Air Quality ; 12.4 Regional Air Quality Models ; 12.5 Applications of Air Quality Models ; References ; Symbols ; Index ; All Chapters end with Problems and Exercisesshow more

Rating details

3 ratings
3.33 out of 5 stars
5 0% (0)
4 67% (2)
3 0% (0)
2 33% (1)
1 0% (0)
Book ratings by Goodreads
Goodreads is the world's largest site for readers with over 50 million reviews. We're featuring millions of their reader ratings on our book pages to help you find your new favourite book. Close X