Advances in Geophysics: Volume 35

Advances in Geophysics: Volume 35 : Seismological Structure of Slabs

Series edited by  , Series edited by 

Free delivery worldwide

Available. Dispatched from the UK in 2 business days
When will my order arrive?

Description

This monograph provides an overview of the progress made in illuminating the properties of deep slabs and the surrounding mantle, since the introduction of the plate tectonics model to the earth sciences 25 years ago. The thermal and chemical characteristics of the subducted lithosphere are determined through thermal and petrological modelling, with seismological observations providing critical constraints on model parameters. Down-wellings of the oceanic lithosphere play a critical role in plate tectonics by recycling to the mantle material that has risen at mid-ocean ridges and cooled at the Earth's surface. To assist future efforts in developing detailed thermal and petrological models of oceanic lithosphere down-wellings, this volume includes a review of seismological observations and models. A range of seismological procedures are considered, from travel time constraints on seismic velocity anomalies in the subducting lithospheric slabs, to wave conversions and reflections of internal and external slab boundaries. A reference list is included for earth science researchers and seismological specialists which lists most of the critical literature on slab structure.
show more

Product details

  • Hardback | 185 pages
  • 154.94 x 231.14 x 20.32mm | 430.91g
  • Academic Press Inc
  • San Diego, United States
  • English
  • 012018835X
  • 9780120188352

Table of contents

Seismological Constraints on the Velocity Structure and Fate of Subducting Lithospheric Slabs: 25 Years of Progress

Index
show more

Review quote

"All geophysicists seriously interested in subduction and mantle processes should consider having a copy on their shelves." --AMERICAN GEOPHYSIC UNION
show more

About Barry Saltzman

Barry Saltzman, 1932-2001, was professor of geology and geophysics at Yale University and a pioneer in the theory of weather and climate, in which he made several profound and lasting contributions to knowledge of the atmosphere and climate. Saltzman developed a series of models and theories of how ice sheets, atmospheric winds, ocean currents, carbon dioxide concentration, and other factors work together, causing the climate to oscillate in a 100,000-year cycle. For this and other scientific contributions, he received the 1998 Carl Gustaf Rossby Research Medal, the highest award from the American Meteorological Society. Saltzman was a fellow of the American Meteorological Society and the American Association for the Advancement of Science and an honorary member of the Academy of Science of Lisbon. His work in 1962 on thermal convection led to the discovery of chaos theory and the famous "Saltzman-Lorenz attractor."
show more