• Scientific Computing, Validated Numerics, Interval Methods See large image

    Scientific Computing, Validated Numerics, Interval Methods (Paperback) Edited by Walter Krämer, Edited by Jürgen Wolff von Gudenberg

    $185.87 - Save $29.83 13% off - RRP $215.70 Free delivery worldwide Available
    Dispatched in 3 business days
    When will my order arrive?
    Add to basket | Add to wishlist |

    DescriptionScan 2000, the GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic, and Validated Numerics and Interval 2000, the International Conference on Interval Methods in Science and Engineering were jointly held in Karlsruhe, September 19-22, 2000. The joint conference continued the series of 7 previous Scan-symposia under the joint sponsorship of GAMM and IMACS. These conferences have traditionally covered the numerical and algorithmic aspects of scientific computing, with a strong emphasis on validation and verification of computed results as well as on arithmetic, programming, and algorithmic tools for this purpose. The conference further continued the series of 4 former Interval conferences focusing on interval methods and their application in science and engineering. The objectives are to propagate current applications and research as well as to promote a greater understanding and increased awareness of the subject matters. The symposium was held in Karlsruhe the European cradle of interval arithmetic and self-validating numerics and attracted 193 researchers from 33 countries. 12 invited and 153 contributed talks were given. But not only the quantity was overwhelming we were deeply impressed by the emerging maturity of our discipline. There were many talks discussing a wide variety of serious applications stretching all parts of mathematical modelling. New efficient, publicly available or even commercial tools were proposed or presented, and also foundations of the theory of intervals and reliable computations were considerably strengthened.


Other books

Other people who viewed this bought | Other books in this category
Showing items 1 to 10 of 10

 

Reviews | Bibliographic data
  • Full bibliographic data for Scientific Computing, Validated Numerics, Interval Methods

    Title
    Scientific Computing, Validated Numerics, Interval Methods
    Authors and contributors
    Edited by Walter Krämer, Edited by Jürgen Wolff von Gudenberg
    Physical properties
    Format: Paperback
    Number of pages: 408
    Width: 170 mm
    Height: 244 mm
    Thickness: 24 mm
    Weight: 1,569 g
    Language
    English
    ISBN
    ISBN 13: 9781441933768
    ISBN 10: 144193376X
    Classifications

    BIC E4L: COM
    Nielsen BookScan Product Class 3: S10.0
    B&T Book Type: NF
    LC subject heading:
    Warengruppen-Systematik des deutschen Buchhandels: 16320
    LC classification: QA
    Ingram Subject Code: MA
    B&T General Subject: 229
    LC subject heading:
    Abridged Dewey: 004
    BIC subject category V2: PBKS, UYA
    LC subject heading:
    B&T Merchandise Category: COM
    BISAC V2.8: COM014000, MAT003000
    LC subject heading:
    BISAC V2.8: COM051300
    LC classification: QA76.9.A43
    DC22: 511.8
    LC classification: QA75.5-76.95, QA297-299.4, QA76.6-76.66
    Thema V1.0: UYA, UMB, PBKS
    Edition statement
    1st ed. Softcover of orig. ed. 2001
    Illustrations note
    biography
    Publisher
    Springer-Verlag New York Inc.
    Imprint name
    Springer-Verlag New York Inc.
    Publication date
    01 December 2010
    Publication City/Country
    New York, NY
    Table of contents
    SCAN 2000 Keynote Address the Future of Intervals; G.W. Walster. Part I: Software- and Hardware-Tools. Variable-Precision Exponential Evaluation; J. Hormigo, et al. Fast computation of some special integrals of mathematical physics; E.A. Karatsuba. Interval Input and Output; E. Hyvonen. A Case for Interval Hardware on Superscalar Processors; J.E. Stine, M.J. Schulte. Evaluating the Impact of Accurate Branch Prediction on Interval Software; A. Akkas, et al. Automatic Test Case Generation Using Interval Arithmetic; G. Schumacher, A. Bantle. Part II: Linear Algebra. On the Hull of the Solution Sets of Interval Linear Equations; J. Konickova. Computation of Algebraic Solutions to Interval Systems via Systems of Coordinates; S. Markov. Towards Diagrammatic Analysis of Systems of Interval 'Linear Equations'; Z. Kulpa. On the Solution of Parametrised Linear Systems; E.D. Popova. Part III: Polynomials. Verified Solutions of Systems of Nonlinear Polynomial Equations; D. Fausten, W. Luther. Euler-like Method for the Simultaneous Inclusion of Polynomial Zeros with Weierstrass' Connection; M.S. Petkovic, D.V. Vranic. Part IV: Set Enclosures. Guaranteed Set Computation with Subpavings; M. Kieffer, et al. A New Intersection Algorithm for Parametric Surfaces Based on Linear Interval Estimations; K. Buehler, W. Barth. Nonlinear State Estimation Using Forward-Backward Propagation of Intervals in an Algorithm; L. Jaulin, et al. Part V: Global Optimization. Interval Methods for Global Optimization Using the Box Method; A.E. Csallner, et al. A Branch-and-Prune Method for Global Optimization; D.G. Sotiropoulos, Th.N. Grapsa. Simulation of aControlled Aircraft Elevator under Sensor Uncertainties; J. Heeks, et al. Part VI: Control. Traditional Parameter Estimation Versus Estimation of Guaranteed Parameter Sets; E.P. Hofer, et al. Stabilizing Control Design of Nonlinear Process Involving Uncertainties; M. Krastanov, N. Dimitrova. Set Estimation, Computation of Volumes and Data Safety; I. Braems, et al. Part VII: ODE and DAE and Applications. Verified High-Order Integration of DAEs and Higher-order ODEs; J. Hoefkens, et al. About a Finite Dimensional Reduction Method for Conservative Dynamical Systems and its Applications; A. Prykarpatsky, et al. Verified Determination of Singularities in Chemical Processes; C.H. Bischof, et al. Modeling of Multibody Systems with Interval Arithmetic; C. Horsken, H. Traczinski. Part VIII: Stochastics and Probability. On the Algebraic Properties of Stochastic Arithmetic. Comparison to Interval Arithmetic; R. Alt, S. Markov. Global Random Walk Simulations of Diffusion; C. Vamos, et al. Interval Computations as a Particular Case of a General Scheme Involving Classes of Probability Distributions; S. Ferson, et al. For Reliable and Powerful Scientific Computations; F. Jezequel, J.-M. Chesneaux. Reliable Representations of Strange Attractors; D. Michelucci. Appendix: The Referees. Index.