Representation Theory and Complex Analysis

Representation Theory and Complex Analysis : Lectures Given at the C.I.M.E. Summer School Held in Venice, Italy, June 10-17, 2004

By (author) Michael Cowling , By (author) Edward Frenkel , By (author) Masaki Kashiwara , By (author) Alain Valette , By (author) David A. Vogan , By (author) Nolan R. Wallach , Volume editor Enrico Casadio Tarabusi , Volume editor Andrea D'Agnolo , Volume editor Massimo A. Picardello

US$74.94

Free delivery worldwide

Available
Dispatched in 3 business days

When will my order arrive?

Six leading experts lecture on a wide spectrum of recent results on the subject of the title. They present a survey of various interactions between representation theory and harmonic analysis on semisimple groups and symmetric spaces, and recall the concept of amenability. They further illustrate how representation theory is related to quantum computing; and much more. Taken together, this volume provides both a solid reference and deep insights on current research activity.

show more
  • Paperback | 389 pages
  • 156 x 234 x 20mm | 598.74g
  • 03 Apr 2008
  • Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
  • Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Berlin
  • English
  • biography
  • 3540768912
  • 9783540768913

Other books in this category

Back cover copy

Six leading experts lecture on a wide spectrum of recent results on the subject of the title, providing both a solid reference and deep insights on current research activity. Michael Cowling presents a survey of various interactions between representation theory and harmonic analysis on semisimple groups and symmetric spaces. Alain Valette recalls the concept of amenability and shows how it is used in the proof of rigidity results for lattices of semisimple Lie groups. Edward Frenkel describes the geometric Langlands correspondence for complex algebraic curves, concentrating on the ramified case where a finite number of regular singular points is allowed. Masaki Kashiwara studies the relationship between the representation theory of real semisimple Lie groups and the geometry of the flag manifolds associated with the corresponding complex algebraic groups. David Vogan deals with the problem of getting unitary representations out of those arising from complex analysis, such as minimal globalizations realized on Dolbeault cohomology with compact support. Nolan Wallach illustrates how representation theory is related to quantum computing, focusing on the study of qubit entanglement.

show more