
The Princeton Companion to Mathematics (Princeton University Press) (Hardback)
$84.87  Save $36.23 29% off  RRP $121.10 Free delivery worldwide Available
Dispatched in 1 business day When will my order arrive?  DescriptionThis is a oneofakind reference for anyone with a serious interest in mathematics. Edited by Timothy Gowers, a recipient of the Fields Medal, it presents nearly two hundred entries, written especially for this book by some of the world's leading mathematicians, that introduce basic mathematical tools and vocabulary; trace the development of modern mathematics; explain essential terms and concepts; examine core ideas in major areas of mathematics; describe the achievements of scores of famous mathematicians; explore the impact of mathematics on other disciplines such as biology, finance, and musicand much, much more. Unparalleled in its depth of coverage, The Princeton Companion to Mathematics surveys the most active and exciting branches of pure mathematics, providing the context and broad perspective that are vital at a time of increasing specialization in the field. Packed with information and presented in an accessible style, this is an indispensable resource for undergraduate and graduate students in mathematics as well as for researchers and scholars seeking to understand areas outside their specialties. Features nearly 200 entries, organized thematically and written by an international team of distinguished contributors Presents major ideas and branches of pure mathematics in a clear, accessible style Defines and explains important mathematical concepts, methods, theorems, and open problems Introduces the language of mathematics and the goals of mathematical research Covers number theory, algebra, analysis, geometry, logic, probability, and more Traces the history and development of modern mathematics Profiles more than ninetyfive mathematicians who influenced those working today Explores the influence of mathematics on other disciplines Includes bibliographies, crossreferences, and a comprehensive index Contributors incude: Graham Allan, Noga Alon, George Andrews, Tom Archibald, Sir Michael Atiyah, David Aubin, Joan Bagaria, Keith Ball, June BarrowGreen, Alan Beardon, David D. BenZvi, Vitaly Bergelson, Nicholas Bingham, Bela Bollobas, Henk Bos, Bodil Branner, Martin R. Bridson, John P. Burgess, Kevin Buzzard, Peter J. Cameron, JeanLuc Chabert, Eugenia Cheng, Clifford C. Cocks, Alain Connes, Leo Corry, Wolfgang Coy, Tony Crilly, Serafina Cuomo, Mihalis Dafermos, Partha Dasgupta, Ingrid Daubechies, Joseph W. Dauben, John W. Dawson Jr., Francois de Gandt, Persi Diaconis, Jordan S. Ellenberg, Lawrence C. Evans, Florence Fasanelli, Anita Burdman Feferman, Solomon Feferman, Charles Fefferman, Della Fenster, Jose Ferreiros, David Fisher, Terry Gannon, A. Gardiner, Charles C. Gillispie, Oded Goldreich, Catherine Goldstein, Fernando Q. Gouvea, Timothy Gowers, Andrew Granville, Ivor GrattanGuinness, Jeremy Gray, Ben Green, Ian Grojnowski, Niccolo Guicciardini, Michael Harris, Ulf Hashagen, Nigel Higson, Andrew Hodges, F. E. A. Johnson, Mark Joshi, Kiran S. Kedlaya, Frank Kelly, Sergiu Klainerman, Jon Kleinberg, Israel Kleiner, Jacek Klinowski, Eberhard Knobloch, Janos Kollar, T. W. Korner, Michael Krivelevich, Peter D. Lax, Imre Leader, JeanFrancois Le Gall, W. B. R. Lickorish, Martin W. Liebeck, Jesper Lutzen, Des MacHale, Alan L. Mackay, Shahn Majid, Lech Maligranda, David Marker, Jean Mawhin, Barry Mazur, Dusa McDuff, Colin McLarty, Bojan Mohar, Peter M. Neumann, Catherine Nolan, James Norris, Brian Osserman, Richard S. Palais, Marco Panza, Karen Hunger Parshall, Gabriel P. Paternain, Jeanne Peiffer, Carl Pomerance, Helmut Pulte, Bruce Reed, Michael C. Reed, Adrian Rice, Eleanor Robson, Igor Rodnianski, John Roe, Mark Ronan, Edward Sandifer, Tilman Sauer, Norbert Schappacher, Andrzej Schinzel, Erhard Scholz, Reinhard SiegmundSchultze, Gordon Slade, David J. Spiegelhalter, Jacqueline Stedall, Arild Stubhaug, Madhu Sudan, Terence Tao, Jamie Tappenden, C. H. Taubes, Rudiger Thiele, Burt Totaro, Lloyd N. Trefethen, Dirk van Dalen, Richard Weber, Dominic Welsh, Avi Wigderson, Herbert Wilf, David Wilkins, B. Yandell, Eric Zaslow, Doron Zeilberger
 Publisher: Princeton University Press
 Published: 01 November 2008
 Format: Hardback 1056 pages
 See: Full bibliographic data
 Categories: General Encyclopaedias  Mathematics
 ISBN 13: 9780691118802 ISBN 10: 0691118809
 Sales rank: 40,181
Other books
Full bibliographic data for The Princeton Companion to Mathematics
 Title
 The Princeton Companion to Mathematics
 Authors and contributors
 Physical properties
 Format: Hardback
Number of pages: 1056
Width: 212 mm
Height: 254 mm
Thickness: 68 mm
Weight: 2,620 g  Language
 English
 ISBN
 ISBN 13: 9780691118802
ISBN 10: 0691118809  Classifications
BIC E4L: MAT
Nielsen BookScan Product Class 3: S7.8
B&T Book Type: NF
DC22: 510
LC subject heading:
B&T Modifier: Region of Publication: 01
B&T Modifier: Academic Level: 01
BIC subject category V2: PB
B&T Modifier: Text Format: 40
B&T General Subject: 710
WarengruppenSystematik des deutschen Buchhandels: 16200
Abridged Dewey: 510
Ingram Subject Code: MA
B&T Approval Code: A51010000
LC subject heading:
BISAC V2.8: REF010000
B&T Merchandise Category: UP
BISAC V2.8: MAT030000, MAT026000
LC subject heading: ,
LC classification: QA11.2 .P745 2008
Thema V1.0: PB Illustrations note
 Blackandwhite illustrations throughout  Crossreferences, bibliographies, index
 Publisher
 Princeton University Press
 Imprint name
 Princeton University Press
 Publication date
 01 November 2008
 Publication City/Country
 New Jersey
 Table of contents
 Preface ix Contributors xvii Part I Introduction I.1 What Is Mathematics About? 1 I.2 The Language and Grammar of Mathematics 8 I.3 Some Fundamental Mathematical Definitions 16 I.4 The General Goals of Mathematical Research 48 Part II The Origins of Modern Mathematics II.1 From Numbers to Number Systems 77 II.2 Geometry 83 II.3 The Development of Abstract Algebra 95 II.4 Algorithms 106 II.5 The Development of Rigor in Mathematical Analysis 117 II.6 The Development of the Idea of Proof 129 II.7 The Crisis in the Foundations of Mathematics 142 Part III Mathematical Concepts III.1 The Axiom of Choice 157 III.2 The Axiom of Determinacy 159 III.3 Bayesian Analysis 159 III.4 Braid Groups 160 III.5 Buildings 161 III.6 CalabiYau Manifolds 163 III.7 Cardinals 165 III.8 Categories 165 III.9 Compactness and Compactification 167 III.10 Computational Complexity Classes 169 III.11 Countable and Uncountable Sets 170 III.12 C*Algebras 172 III.13 Curvature 172 III.14 Designs 172 III.15 Determinants 174 III.16 Differential Forms and Integration 175 III.17 Dimension 180 III.18 Distributions 184 III.19 Duality 187 III.20 Dynamical Systems and Chaos 190 III.21 Elliptic Curves 190 III.22 The Euclidean Algorithm and Continued Fractions 191 III.23 The Euler and NavierStokes Equations 193 III.24 Expanders 196 III.25 The Exponential and Logarithmic Functions 199 III.26 The Fast Fourier Transform 202 III.27 The Fourier Transform 204 III.28 Fuchsian Groups 208 III.29 Function Spaces 210 III.30 Galois Groups 213 III.31 The Gamma Function 213 III.32 Generating Functions 214 III.33 Genus 215 III.34 Graphs 215 III.35 Hamiltonians 215 III.36 The Heat Equation 216 III.37 Hilbert Spaces 219 III.38 Homology and Cohomology 221 III.39 Homotopy Groups 221 III.40 The Ideal Class Group 221 III.41 Irrational and Transcendental Numbers 222 III.42 The Ising Model 223 III.43 Jordan Normal Form 223 III.44 Knot Polynomials 225 III.45 KTheory 227 III.46 The Leech Lattice 227 III.47 LFunctions 228 III.48 Lie Theory 229 III.49 Linear and Nonlinear Waves and Solitons 234 III.50 Linear Operators and Their Properties 239 III.51 Local and Global in Number Theory 241 III.52 The Mandelbrot Set 244 III.53 Manifolds 244 III.54 Matroids 244 III.55 Measures 246 III.56 Metric Spaces 247 III.57 Models of Set Theory 248 III.58 Modular Arithmetic 249 III.59 Modular Forms 250 III.60 Moduli Spaces 252 III.61 The Monster Group 252 III.62 Normed Spaces and Banach Spaces 252 III.63 Number Fields 254 III.64 Optimization and Lagrange Multipliers 255 III.65 Orbifolds 257 III.66 Ordinals 258 III.67 The Peano Axioms 258 III.68 Permutation Groups 259 III.69 Phase Transitions 261 III.70 p 261 III.71 Probability Distributions 263 III.72 Projective Space 267 III.73 Quadratic Forms 267 III.74 Quantum Computation 269 III.75 Quantum Groups 272 III.76 Quaternions, Octonions, and Normed Division Algebras 275 III.77 Representations 279 III.78 Ricci Flow 279 III.79 Riemann Surfaces 282 III.80 The Riemann Zeta Function 283 III.81 Rings, Ideals, and Modules 284 III.82 Schemes 285 III.83 The Schrodinger Equation 285 III.84 The Simplex Algorithm 288 III.85 Special Functions 290 III.86 The Spectrum 294 III.87 Spherical Harmonics 295 III.88 Symplectic Manifolds 297 III.89 Tensor Products 301 III.90 Topological Spaces 301 III.91 Transforms 303 III.92 Trigonometric Functions 307 III.93 Universal Covers 309 III.94 Variational Methods 310 III.95 Varieties 313 III.96 Vector Bundles 313 III.97 Von Neumann Algebras 313 III.98 Wavelets 313 III.99 The ZermeloFraenkel Axioms 314 Part IV Branches of Mathematics IV.1 Algebraic Numbers 315 IV.2 Analytic Number Theory 332 IV.3 Computational Number Theory 348 IV.4 Algebraic Geometry 363 IV.5 Arithmetic Geometry 372 IV.6 Algebraic Topology 383 IV.7 Differential Topology 396 IV.8 Moduli Spaces 408 IV.9 Representation Theory 419 IV.10 Geometric and Combinatorial Group Theory 431 IV.11 Harmonic Analysis 448 IV.12 Partial Differential Equations 455 IV.13 General Relativity and the Einstein Equations 483 IV.14 Dynamics 493 IV.15 Operator Algebras 510 IV.16 Mirror Symmetry 523 IV.17 Vertex Operator Algebras 539 IV.18 Enumerative and Algebraic Combinatorics 550 IV.19 Extremal and Probabilistic Combinatorics 562 IV.20 Computational Complexity 575 IV.21 Numerical Analysis 604 IV.22 Set Theory 615 IV.23 Logic and Model Theory 635 IV.24 Stochastic Processes 647 IV.25 Probabilistic Models of Critical Phenomena 657 IV.26 HighDimensional Geometry and Its Probabilistic Analogues 670 Part V Theorems and Problems V.1 The ABC Conjecture 681 V.2 The AtiyahSinger Index Theorem 681 V.3 The BanachTarski Paradox 684 V.4 The BirchSwinnertonDyer Conjecture 685 V.5 Carleson's Theorem 686 V.6 The Central Limit Theorem 687 V.7 The Classification of Finite Simple Groups 687 V.8 Dirichlet's Theorem 689 V.9 Ergodic Theorems 689 V.10 Fermat's Last Theorem 691 V.11 Fixed Point Theorems 693 V.12 The FourColor Theorem 696 V.13 The Fundamental Theorem of Algebra 698 V.14 The Fundamental Theorem of Arithmetic 699 V.15 Godel's Theorem 700 V.16 Gromov's PolynomialGrowth Theorem 702 V.17 Hilbert's Nullstellensatz 703 V.18 The Independence of the Continuum Hypothesis 703 V.19 Inequalities 703 V.20 The Insolubility of the Halting Problem 706 V.21 The Insolubility of the Quintic 708 V.22 Liouville's Theorem and Roth's Theorem 710 V.23 Mostow's Strong Rigidity Theorem 711 V.24 The P versus NP Problem 713 V.25 The Poincare Conjecture 714 V.26 The Prime Number Theorem and the Riemann Hypothesis 714 V.27 Problems and Results in Additive Number Theory 715 V.28 From Quadratic Reciprocity to Class Field Theory 718 V.29 Rational Points on Curves and the Mordell Conjecture 720 V.30 The Resolution of Singularities 722 V.31 The RiemannRoch Theorem 723 V.32 The RobertsonSeymour Theorem 725 V.33 The ThreeBody Problem 726 V.34 The Uniformization Theorem 728 V.35 The Weil Conjectures 729 Part VI Mathematicians VI.1 Pythagoras (ca. 569 B.C.E.ca. 494 B.C.E.) 733 VI.2 Euclid (ca. 325 B.C.E.ca. 265 B.C.E.) 734 VI.3 Archimedes (ca. 287 B.C.E.212 B.C.E.) 734 VI.4 Apollonius (ca. 262 B.C.E.ca. 190 B.C.E.) 735 VI.5 Abu Ja'far Muhammad ibn Musa alKhwarizmi (800847) 736 VI.6 Leonardo of Pisa (known as Fibonacci) (ca. 1170ca. 1250) 737 VI.7 Girolamo Cardano (15011576) 737 VI.8 Rafael Bombelli (1526after 1572) 737 VI.9 Francois Viete (15401603) 737 VI.10 Simon Stevin (15481620) 738 VI.11 Rene Descartes (15961650) 739 VI.12 Pierre Fermat (160?1665) 740 VI.13 Blaise Pascal (16231662) 741 VI.14 Isaac Newton (16421727) 742 VI.15 Gottfried Wilhelm Leibniz (16461716) 743 VI.16 Brook Taylor (16851731) 745 VI.17 Christian Goldbach (16901764) 745 VI.18 The Bernoullis (fl. 18th century) 745 VI.19 Leonhard Euler (17071783) 747 VI.20 Jean Le Rond d'Alembert (17171783) 749 VI.21 Edward Waring (ca. 17351798) 750 VI.22 Joseph Louis Lagrange (17361813) 751 VI.23 PierreSimon Laplace (17491827) 752 VI.24 AdrienMarie Legendre (17521833) 754 VI.25 JeanBaptiste Joseph Fourier (17681830) 755 VI.26 Carl Friedrich Gauss (17771855) 755 VI.27 SimeonDenis Poisson (17811840) 757 VI.28 Bernard Bolzano (17811848) 757 VI.29 AugustinLouis Cauchy (17891857) 758 VI.30 August Ferdinand Mobius (17901868) 759 VI.31 Nicolai Ivanovich Lobachevskii (17921856) 759 VI.32 George Green (17931841) 760 VI.33 Niels Henrik Abel (18021829) 760 VI.34 Janos Bolyai (18021860) 762 VI.35 Carl Gustav Jacob Jacobi (18041851) 762 VI.36 Peter Gustav Lejeune Dirichlet (18051859) 764 VI.37 William Rowan Hamilton (18051865) 765 VI.38 Augustus De Morgan (18061871) 765 VI.39 Joseph Liouville (18091882) 766 VI.40 Eduard Kummer (18101893) 767 VI.41 Evariste Galois (18111832) 767 VI.42 James Joseph Sylvester (18141897) 768 VI.43 George Boole (18151864) 769 VI.44 Karl Weierstrass (18151897) 770 VI.45 Pafnuty Chebyshev (18211894) 771 VI.46 Arthur Cayley (18211895) 772 VI.47 Charles Hermite (18221901) 773 VI.48 Leopold Kronecker (18231891) 773 VI.49 Georg Friedrich Bernhard Riemann (18261866) 774 VI.50 Julius Wilhelm Richard Dedekind (18311916) 776 VI.51 Emile Leonard Mathieu (18351890) 776 VI.52 Camille Jordan (18381922) 777 VI.53 Sophus Lie (18421899) 777 VI.54 Georg Cantor (18451918) 778 VI.55 William Kingdon Clifford (18451879) 780 VI.56 Gottlob Frege (18481925) 780 VI.57 Christian Felix Klein (18491925) 782 VI.58 Ferdinand Georg Frobenius (18491917) 783 VI.59 Sofya (Sonya) Kovalevskaya (18501891) 784 VI.60 William Burnside (18521927) 785 VI.61 Jules Henri Poincare (18541912) 785 [Illustration credit: Portrait courtesy of Henri Poincare Archives (CNRS,UMR 7117, Nancy)] VI.62 Giuseppe Peano (18581932) 787 VI.63 David Hilbert (18621943) 788 VI.64 Hermann Minkowski (18641909) 789 VI.65 Jacques Hadamard (18651963) 790 VI.66 Ivar Fredholm (18661927) 791 VI.67 CharlesJean de la Vallee Poussin (18661962) 792 VI.68 Felix Hausdorff (18681942) 792 VI.69 Elie Joseph Cartan (18691951) 794 VI.70 Emile Borel (18711956) 795 VI.71 Bertrand Arthur William Russell (18721970) 795 VI.72 Henri Lebesgue (18751941) 796 VI.73 Godfrey Harold Hardy (18771947) 797 VI.74 Frigyes (Frederic) Riesz (18801956) 798 VI.75 Luitzen Egbertus Jan Brouwer (18811966) 799 VI.76 Emmy Noether (18821935) 800 VI.77 Wac?aw Sierpinski (18821969) 801 VI.78 George Birkhoff (18841944) 802 VI.79 John Edensor Littlewood (18851977) 803 VI.80 Hermann Weyl (18851955) 805 VI.81 Thoralf Skolem (18871963) 806 VI.82 Srinivasa Ramanujan (18871920) 807 VI.83 Richard Courant (18881972) 808 VI.84 Stefan Banach (18921945) 809 VI.85 Norbert Wiener (18941964) 811 VI.86 Emil Artin (18981962) 812 VI.87 Alfred Tarski (19011983) 813 VI.88 Andrei Nikolaevich Kolmogorov (19031987) 814 VI.89 Alonzo Church (19031995) 816 VI.90 William Vallance Douglas Hodge (19031975) 816 VI.91 John von Neumann (19031957) 817 VI.92 Kurt Godel (19061978) 819 VI.93 Andre Weil (19061998) 819 VI.94 Alan Turing (19121954) 821 VI.95 Abraham Robinson (19181974) 822 VI.96 Nicolas Bourbaki (1935) 823 Part VII The Influence of Mathematics VII.1 Mathematics and Chemistry 827 VII.2 Mathematical Biology 837 VII.3 Wavelets and Applications 848 VII.4 The Mathematics of Traffic in Networks 862 VII.5 The Mathematics of Algorithm Design 871 VII.6 Reliable Transmission of Information 878 VII.7 Mathematics and Cryptography 887 VII.8 Mathematics and Economic Reasoning 895 VII.9 The Mathematics of Money 910 VII.10 Mathematical Statistics 916 VII.11 Mathematics and Medical Statistics 921 VII.12 Analysis, Mathematical and Philosophical 928 VII.13 Mathematics and Music 935 VII.14 Mathematics and Art 944 Part VIII Final Perspectives VIII.1 The Art of Problem Solving 955 VIII.2 "Why Mathematics?" You Might Ask 966 VIII.3 The Ubiquity of Mathematics 977 VIII.4 Numeracy 983 VIII.5 Mathematics: An Experimental Science 991 VIII.6 Advice to a Young Mathematician 1000 VIII.7 A Chronology of Mathematical Events 1010 Index 1015