• Pattern Recognition and Machine Learning See large image

    Pattern Recognition and Machine Learning (Information Science and Statistics) (Hardback) By (author) Christopher M. Bishop

    $82.16 - Save $21.17 20% off - RRP $103.33 Free delivery worldwide Available
    Dispatched in 3 business days
    When will my order arrive?
    Add to basket | Add to wishlist |

    DescriptionThis is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.


Other books

Other people who viewed this bought | Other books in this category
Showing items 1 to 10 of 10

 

Reviews | Bibliographic data
  • Full bibliographic data for Pattern Recognition and Machine Learning

    Title
    Pattern Recognition and Machine Learning
    Authors and contributors
    By (author) Christopher M. Bishop
    Physical properties
    Format: Hardback
    Number of pages: 760
    Width: 178 mm
    Height: 235 mm
    Thickness: 43 mm
    Weight: 1,814 g
    Language
    English
    ISBN
    ISBN 13: 9780387310732
    ISBN 10: 0387310738
    Classifications

    BIC E4L: COM
    Nielsen BookScan Product Class 3: S10.2
    B&T Book Type: NF
    B&T Modifier: Region of Publication: 01
    LC subject heading: ,
    B&T Modifier: Academic Level: 02
    B&T Modifier: Text Format: 06
    B&T General Subject: 229
    B&T Modifier: Text Format: 01
    B&T Merchandise Category: COM
    Ingram Subject Code: XG
    Libri: I-XG
    LC subject heading: , ,
    BIC subject category V2: UYQV
    Warengruppen-Systematik des deutschen Buchhandels: 16300
    LC subject heading: ,
    BISAC V2.8: COM004000
    LC subject heading:
    DC22: 006.4
    BISAC V2.8: COM016000
    LC subject heading:
    LC classification: TK7882.P3, Q327 .B52 2006
    DC23: 004
    LC classification: QA75.5-76.95, TJ210.2-211.495, Q334-342, QA276-280, TA1637-1638, Q337.5
    Thema V1.0: UYQV, UYQP
    Edition
    New edition
    Edition statement
    1st ed. 2006. Corr. 2nd printing 2011
    Illustrations note
    304 colour illustrations, biography
    Publisher
    Springer-Verlag New York Inc.
    Imprint name
    Springer-Verlag New York Inc.
    Publication date
    01 February 2010
    Publication City/Country
    New York, NY
    Review quote
    From the reviews: "This beautifully produced book is intended for advanced undergraduates, PhD students, and researchers and practitioners, primarily in the machine learning or allied areas...A strong feature is the use of geometric illustration and intuition...This is an impressive and interesting book that might form the basis of several advanced statistics courses. It would be a good choice for a reading group." John Maindonald for the Journal of Statistical Software "In this book, aimed at senior undergraduates or beginning graduate students, Bishop provides an authoritative presentation of many of the statistical techniques that have come to be considered part of 'pattern recognition' or 'machine learning'. ... This book will serve as an excellent reference. ... With its coherent viewpoint, accurate and extensive coverage, and generally good explanations, Bishop's book is a useful introduction ... and a valuable reference for the principle techniques used in these fields." (Radford M. Neal, Technometrics, Vol. 49 (3), August, 2007) "This book appears in the Information Science and Statistics Series commissioned by the publishers. ... The book appears to have been designed for course teaching, but obviously contains material that readers interested in self-study can use. It is certainly structured for easy use. ... For course teachers there is ample backing which includes some 400 exercises. ... it does contain important material which can be easily followed without the reader being confined to a pre-determined course of study." (W. R. Howard, Kybernetes, Vol. 36 (2), 2007) "Bishop (Microsoft Research, UK) has prepared a marvelous book that provides a comprehensive, 700-page introduction to the fields of pattern recognition and machine learning. Aimed at advanced undergraduates and first-year graduate students, as well as researchers and practitioners, the book assumes knowledge of multivariate calculus and linear algebra ... . Summing Up: Highly recommended. Upper-division undergraduates through professionals." (C. Tappert, CHOICE, Vol. 44 (9), May, 2007) "The book is structured into 14 main parts and 5 appendices. ... The book is aimed at PhD students, researchers and practitioners. It is well-suited for courses on machine learning, statistics, computer science, signal processing, computer vision, data mining, and bio-informatics. Extensive support is provided for course instructors, including more than 400 exercises, lecture slides and a great deal of additional material available at the book's web site ... ." (Ingmar Randvee, Zentralblatt MATH, Vol. 1107 (9), 2007) "This new textbook by C. M. Bishop is a brilliant extension of his former book 'Neural Networks for Pattern Recognition'. It is written for graduate students or scientists doing interdisciplinary work in related fields. ... In summary, this textbook is an excellent introduction to classical pattern recognition and machine learning (in the sense of parameter estimation). A large number of very instructive illustrations adds to this value." (H. G. Feichtinger, Monatshefte fur Mathematik, Vol. 151 (3), 2007) "Author aims this text at advanced undergraduates, beginning graduate students, and researchers new to machine learning and pattern recognition. ... Pattern Recognition and Machine Learning provides excellent intuitive descriptions and appropriate-level technical details on modern pattern recognition and machine learning. It can be used to teach a course or for self-study, as well as for a reference. ... I strongly recommend it for the intended audience and note that Neal (2007) also has given this text a strong review to complement its strong sales record." (Thomas Burr, Journal of the American Statistical Association, Vol. 103 (482), June, 2008) "This accessible monograph seeks to provide a comprehensive introduction to the fields of pattern recognition and machine learning. It presents a unified treatment of well-known statistical pattern recognition techniques. ... The book can be used by advanced undergraduates and graduate students ... . The illustrative examples and exercises proposed at the end of each chapter are welcome ... . The book, which provides several new views, developments and results, is appropriate for both researchers and students who work in machine learning ... ." (L. State, ACM Computing Reviews, October, 2008) "Chris Bishop's ... technical exposition that is at once lucid and mathematically rigorous. ... In more than 700 pages of clear, copiously illustrated text, he develops a common statistical framework that encompasses ... machine learning. ... it is a textbook, with a wide range of exercises, instructions to tutors on where to go for full solutions, and the color illustrations that have become obligatory in undergraduate texts. ... its clarity and comprehensiveness will make it a favorite desktop companion for practicing data analysts." (H. Van Dyke Parunak, ACM Computing Reviews, Vol. 49 (3), March, 2008)
    Back cover copy
    The dramatic growth in practical applications for machine learning over the last ten years has been accompanied by many important developments in the underlying algorithms and techniques. For example, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic techniques. The practical applicability of Bayesian methods has been greatly enhanced by the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation, while new models based on kernels have had a significant impact on both algorithms and applications. This completely new textbook reflects these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first-year PhD students, as well as researchers and practitioners. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory. The book is suitable for courses on machine learning, statistics, computer science, signal processing, computer vision, data mining, and bioinformatics. Extensive support is provided for course instructors, including more than 400 exercises, graded according to difficulty. Example solutions for a subset of the exercises are available from the book web site, while solutions for the remainder can be obtained by instructors from the publisher. The book is supported by a great deal of additional material, and the reader is encouraged to visit the book web site for the latest information. Christopher M. Bishop is Deputy Director of Microsoft Research Cambridge, and holds a Chair in Computer Science at the University of Edinburgh. He is a Fellow of Darwin College Cambridge, a Fellow of the Royal Academy of Engineering, and a Fellow of the Royal Society of Edinburgh. His previous textbook "Neural Networks for Pattern Recognition" has been widely adopted. Coming soon: *For students, worked solutions to a subset of exercises available on a public web site (for exercises marked "www" in the text) *For instructors, worked solutions to remaining exercises from the Springer web site *Lecture slides to accompany each chapter *Data sets available for download
    Table of contents
    Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.