Christmas Posting Dates
Molecular Driving Forces: Statistical Thermodynamics in Biology, Chemistry, Physics, and Nanoscience

Molecular Driving Forces: Statistical Thermodynamics in Biology, Chemistry, Physics, and Nanoscience

Paperback

By (author) Ken Dill, By (author) Sarina Bromberg

$93.82
List price $98.70
You save $4.88 (4%)

Free delivery worldwide
Available
Dispatched in 3 business days
When will my order arrive?

  • Publisher: Garland Publishing Inc
  • Format: Paperback | 720 pages
  • Dimensions: 211mm x 254mm x 28mm | 1,542g
  • Publication date: 13 December 2010
  • Publication City/Country: CT
  • ISBN 10: 0815344309
  • ISBN 13: 9780815344308
  • Edition: 2, Revised
  • Edition statement: 2nd Revised edition
  • Illustrations note: 690 black & white illustrations
  • Sales rank: 296,127

Product description

Molecular Driving Forces, Second Edition is an introductory statistical thermodynamics text that describes the principles and forces that drive chemical and biological processes. It demonstrates how the complex behaviors of molecules can result from a few simple physical processes, and how simple models provide surprisingly accurate insights into the workings of the molecular world. Widely adopted in its First Edition, Molecular Driving Forces is regarded by teachers and students as an accessible textbook that illuminates underlying principles and concepts. The Second Edition includes two brand new chapters: (1) "Microscopic Dynamics" introduces single molecule experiments; and (2) "Molecular Machines" considers how nanoscale machines and engines work. "The Logic of Thermodynamics" has been expanded to its own chapter and now covers heat, work, processes, pathways, and cycles. New practical applications, examples, and end-of-chapter questions are integrated throughout the revised and updated text, exploring topics in biology, environmental and energy science, and nanotechnology. Written in a clear and reader-friendly style, the book provides an excellent introduction to the subject for novices while remaining a valuable resource for experts.

Other books in this category

Showing items 1 to 10 of 10
Categories:

Author information

Ken A. Dill is Professor of Pharmaceutical Chemistry and Biophysics at the University of California, San Francisco. He received his undergraduate training at MIT, his PhD from the University of California, San Diego, and did postdoctoral work at Stanford. A leading researcher in biopolymer statistical mechanics and protein folding, he has been the President of the Biophysical Society and received the Hans Neurath Award from the Protein Society in 1998. Sarina Bromberg received her BFA at the Cooper Union for the Advancement of Science and Art, her PhD in molecular biophysics from Wesleyan University, and her postdoctoral training at the University of California, San Francisco. She writes, edits and illustrates scientific textbooks.

Table of contents

1: Principles of Probability 2: Extremum Principles Predict Equilibria 3: Heat, Work & Energy 4: Math Tools: Multivariate Calculus 5: Entropy & the Boltzmann Law 6: Thermodynamic Driving Forces 7: The Logic of Thermodynamics 8: Laboratory Conditions & Free Energies 9: Maxwell's Relations & Mixtures 10: The Boltzman Distribution Law 11: The Statistical Mechanics of Simple Gases & Solids 12: What Is Temperature? What Is Heat Capacity? 13: Chemical Equilibria 14: Equilibria Between Liquids, Solids, & Gases 15: Solutions & Mixtures 16: The Solvation & Transfer of Molecules Between Phases 17: Physical Kinetics: Diffusion, Permeation & Flow 18: Microscopic Dynamics 19: Chemical Kinetics & Transition States 20: Coulomb's Law of Electrostatic Forces 21: The Electrostatic Potential 22: Electrochemical Equilibria 23: Salt Ions Shield Charged Objects in Solution 24: Intermolecular Interactions 25: Phase Transitions 26: Cooperativity: The Hexlix-Coil, Isling & Landau Models 27: Adsorption, Binding & Catalysis 28: Multi-site & Cooperative Ligand Binding 29: Bio & Nano Machines 30: Water 31: Water as a Solvent 32: Polymer Solutions 33: Polymer Elasticity & Collapse 34: Polymers Resist Confinement & Deformation Appendices