off

# An Introduction to Quantum Field Theory

US$77.20US$88.00

You save US$10.80

Free delivery worldwide

Available

Dispatched from the UK in 1 business day

## Description

An Introduction to Quantum Field Theory is a textbook intended for the graduate physics course covering relativistic quantum mechanics, quantum electrodynamics, and Feynman diagrams. The authors make these subjects accessible through carefully worked examples illustrating the technical aspects of the subject, and intuitive explanations of what is going on behind the mathematics. After presenting the basics of quantum electrodynamics, the authors discuss the theory of renormalization and its relation to statistical mechanics, and introduce the renormalization group. This discussion sets the stage for a discussion of the physical principles that underlie the fundamental interactions of elementary particle physics and their description by gauge field theories.

show more## Product details

- Hardback | 864 pages
- 162.56 x 233.68 x 48.26mm | 1,088.62g
- 01 Oct 1995
- The Perseus Books Group
- Westview Press Inc
- Boulder, CO, United States
- English
- 0201503972
- 9780201503975
- 58,458

## People who bought this also bought

## Other books in Quantum Physics (quantum Mechanics & Quantum Field Theory)

### Spontaneous Evolution: Our Positive Future and a Way to Get There from Here

01 May 2014

Paperback

US$14.54 US$16.95

Save US$2.41

## Other books in this series

### Statistical Thermodynamics of Surfaces, Interfaces, and Membranes

28 Jan 2003

Paperback

US$67.07 US$68.00

Save US$0.93

### Lectures on Phase Transitions and the Renormalization Group

21 Jul 1992

Paperback

US$73.29 US$80.00

Save US$6.71

## Back cover copy

An Introduction to Quantum Field Theory is a textbook intended for the graduate physics course covering relativistic quantum mechanics, quantum electrodynamics, and Feynman diagrams. The authors make these subjects accessible through carefully worked examples illustrating the technical aspects of the subject, and intuitive explanations of what is going on behind the mathematics. After presenting the basics of quantum electrodynamics, the authors discuss the theory of renormalization and its relation to statistical mechanics, and introduce the renormalization group. This discussion sets the stage for a discussion of the physical principles that underlie the fundamental interactions of elementary particle physics and their description by gauge field theories.

show more## About Daniel V. Schroeder

Michael E. Peskin received his doctorate in physics from Cornell University and has held research appointments in theoretical physics at Harvard, Cornell, and CEN Saclay. In 1982, he joined the staff of the Stanford Linear Accelerator Center, where he is now Professor of Physics. Daniel V. Schroeder received his doctorate in physics from Stanford University in 1990. He held visiting appointments at Pomona College before joining the faculty of Weber State University, where he is now Associate Professor of Physics. Michael E. Peskin received his doctorate in physics from Cornell University and has held research appointments in theoretical physics at Harvard, Cornell, and CEN Saclay. In 1982, he joined the staff of the Stanford Linear Accelerator Center, where he is now Professor of Physics. Daniel V. Schroeder received his doctorate in physics from Stanford University in 1990. He held visiting appointments at Pomona College before joining the faculty of Weber State University, where he is now Associate Professor of Physics.

show more## Table of contents

Feynman Diagrams and Quantum Electrodynamics * Invitation: Pair Production in e+e- Annihilation * The Klein-Gordon Field * The Dirac Field * Interacting Fields and Feynman Diagrams * Elementary Processes of Quantum Electrodynamics * Radiative Corrections: Introduction * Radiative Corrections: Some Formal Developments * Final Project: Radiation of Gluon Jets Renormalization * Invitation: Ultraviolet Cutoffs and Critical Fluctuations * Functional Methods * Systematics of Renormalization * Renormalization and Symmetry * The Renormalization Group * Critical Exponents and Scalar Field Theory * Final Project: The Coleman-Weinberg Potential Non-Albelian Gauge Theory * Invitation: The Parton Model of Hadron Structure * Non-Albein Gauge Invariance * Quantization of Non-Abelian Gauge Theories * Quantum Chromodynamics * Operator Products and Effective Vertices * Perturbation Theory Anomalies * Gauge Theories with Spontaneous Symmetry Breaking * Quantization of Spontaneously Broken Gauge Theories * Final Project: Decays of the Higgs Boson * Epilogue: Field Theory at the Frontier

show more