• Introduction to Graph Theory See large image

    Introduction to Graph Theory (Dover Books on Advanced Mathematics) (Paperback) By (author) Richard J. Trudeau

    Hard to find title available from Book Depository

    $10.96 - Save $12.44 53% off - RRP $23.40 Free delivery worldwide Available
    Dispatched in 3 business days
    When will my order arrive?
    Add to basket | Add to wishlist |

    DescriptionA stimulating excursion into pure mathematics aimed at "the mathematically traumatized," but great fun for mathematical hobbyists and serious mathematicians as well. Requiring only high school algebra as mathematical background, the book leads the reader from simple graphs through planar graphs, Euler's formula, Platonic graphs, coloring, the genus of a graph, Euler walks, Hamilton walks, and a discussion of The Seven Bridges of Konigsberg. Exercises are included at the end of each chapter. "The topics are so well motivated, the exposition so lucid and delightful, that the book's appeal should be virtually universal . . . Every library should have several copies" -- "Choice." 1976 edition.

Other books

Other people who viewed this bought | Other books in this category
Showing items 1 to 10 of 10


Reviews | Bibliographic data
  • Full bibliographic data for Introduction to Graph Theory

    Introduction to Graph Theory
    Authors and contributors
    By (author) Richard J. Trudeau
    Physical properties
    Format: Paperback
    Number of pages: 240
    Width: 12 mm
    Height: 217 mm
    Thickness: 11 mm
    Weight: 233 g
    ISBN 13: 9780486678702
    ISBN 10: 0486678709

    BIC E4L: MAT
    Nielsen BookScan Product Class 3: S7.8
    B&T Book Type: NF
    Ingram Subject Code: SE
    Libri: I-SE
    B&T Merchandise Category: SCI
    B&T General Subject: 710
    BIC subject category V2: PBF, PBV
    BISAC V2.8: SCI000000
    Warengruppen-Systematik des deutschen Buchhandels: 26240
    DC22: 511.5
    BISAC V2.8: MAT008000, MAT013000
    LC subject heading:
    DC20: 511.5
    DC22: 511/.5
    LC subject heading:
    Dover Categories:
    LC classification: QA166.T74, QA166 .T74 1993
    Dover Categories: ,
    Thema V1.0: PBF, PBV
    2, Revised
    Edition statement
    2nd Revised edition
    Illustrations note
    Dover Publications Inc.
    Imprint name
    Dover Publications Inc.
    Publication date
    01 June 1994
    Publication City/Country
    New York
    Table of contents
      Preface 1. Pure Mathematics     Introduction; Euclidean Geometry as Pure Mathematics; Games; Why Study Pure Mathematics?; What's Coming; Suggested Reading 2. Graphs     Introduction; Sets; Paradox; Graphs; Graph diagrams; Cautions; Common Graphs; Discovery; Complements and Subgraphs; Isomorphism; Recognizing Isomorphic Graphs; Semantics     The Number of Graphs Having a Given nu; Exercises; Suggested Reading 3. Planar Graphs     Introduction; UG, K subscript 5, and the Jordan Curve Theorem; Are there More Nonplanar Graphs?; Expansions;     Kuratowski's Theorem; Determining Whether a Graph is Planar or Nonplanar; Exercises; Suggested Reading 4. Euler's Formula     Introduction; Mathematical Induction; Proof of Euler's Formula; Some Consequences of Euler's Formula; Algebraic Topology; Exercises; Suggested Reading 5. Platonic Graphs     Introduction; Proof of the Theorem; History; Exercises; Suggested Reading 6. Coloring     Chromatic Number; Coloring Planar Graphs; Proof of the Five Color Theorem; Coloring Maps; Exercises; Suggested Reading 7. The Genus of a Graph     Introduction; The Genus of a Graph; Euler's Second Formula; Some Consequences; Estimating the Genus of a Connected Graph; g-Platonic Graphs; The Heawood Coloring Theorem; Exercises; Suggested Reading 8. Euler Walks and Hamilton Walks     Introduction; Euler Walks; Hamilton Walks; Multigraphs; The Königsberg Bridge Problem; Exercises; Suggested Reading   Afterword   Solutions to Selected Exercises   Index   Special symbols