Essential Topology

Essential Topology

Paperback Springer Undergraduate Mathematics

By (author) Martin D. Crossley

$47.45

Free delivery worldwide
Available
Dispatched in 3 business days
When will my order arrive?

  • Publisher: Springer London Ltd
  • Format: Paperback | 240 pages
  • Dimensions: 155mm x 231mm x 15mm | 340g
  • Publication date: 11 February 2011
  • Publication City/Country: England
  • ISBN 10: 1852337826
  • ISBN 13: 9781852337827
  • Edition: 11001
  • Edition statement: 1st ed. 2005. Corr. 4th printing 2011
  • Illustrations note: 110 black & white illustrations, biography
  • Sales rank: 371,493

Product description

This book brings the most important aspects of modern topology within reach of a second-year undergraduate student. It successfully unites the most exciting aspects of modern topology with those that are most useful for research, leaving readers prepared and motivated for further study. Written from a thoroughly modern perspective, every topic is introduced with an explanation of why it is being studied, and a huge number of examples provide further motivation. The book is ideal for self-study and assumes only a familiarity with the notion of continuity and basic algebra.

Other books in this category

Showing items 1 to 11 of 11
Categories:

Review quote

From the reviews: "This book presents the most important aspects of modern topology, essential subjects of research in algebraic topology ... . The book contains all the key results of basic topology and the focus throughout is on providing interesting examples that clarify the ideas and motivate the student. ... this book contains enough material for two-semester courses and offers interesting material for undergraduate-level topology, motivating students for post-graduate study in the field and giving them a solid foundation." (Corina Mohorianu, Zentralblatt MATH, Vol. 1079, 2006) "This text provides a concise and well-focused introduction to point set and algebraic topology. The main purpose is to quickly move to relevant notions from algebraic topology (homotopy and homology). Throughout the book the author has taken great care to explain topological concepts by well-chosen examples. It is written in a clear and pleasant style and can certainly be recommended as a basis for an introductory course on the subject." (M. Kunzinger, Monatshefte fur Mathematik, Vol. 152 (1), 2007)

Back cover copy

Taking a direct route, Essential Topology brings the most important aspects of modern topology within reach of a second-year undergraduate student. Based on courses given at the University of Wales Swansea, it begins with a discussion of continuity and, by way of many examples, leads to the celebrated "Hairy Ball theorem" and on to homotopy and homology: the cornerstones of contemporary algebraic topology. While containing all the key results of basic topology, Essential Topology never allows itself to get mired in details. Instead, the focus throughout is on providing interesting examples that clarify the ideas and motivate the student, reflecting the fact that these are often the key examples behind current research. With chapters on: * continuity and topological spaces * deconstructionist topology * the Euler number * homotopy groups including the fundamental group * simplicial and singular homology, and * fibre bundles Essential Topology contains enough material for two semester-long courses, and offers a one-stop-shop for undergraduate-level topology, leaving students motivated for postgraduate study in the field, and well prepared for it.

Table of contents

Continuous Functions.- Topological Spaces.- Topological Properties.- Deconstructionist Topology.- Homotopy.- The Euler Number.- Homotopy Groups.- Simplicial Homology.- Singular Homology.- More Deconstructionism.