The Algorithmic Beauty of Plants

The Algorithmic Beauty of Plants

Paperback Virtual Laboratory

By (author) Przemyslaw Prusinkiewicz, By (author) Aristid Lindenmayer, Assisted by James Hanan, Assisted by F.D. Fracchia, Assisted by D.R. Fowler, Assisted by M.J.M. de Boer, Assisted by L. Mercer

$83.53
List price $113.13
You save $29.60 26% off

Free delivery worldwide
Available
Dispatched in 3 business days
When will my order arrive?

  • Publisher: Springer-Verlag New York Inc.
  • Format: Paperback | 240 pages
  • Dimensions: 213mm x 277mm x 13mm | 748g
  • Publication date: 1 April 1996
  • Publication City/Country: New York, NY
  • ISBN 10: 0387946764
  • ISBN 13: 9780387946764
  • Edition statement: Softcover reprint of the original 1st ed. 1990
  • Illustrations note: 14 black & white illustrations, biography

Product description

Now available in an affordable softcover edition, this classic in Springer's acclaimed Virtual Laboratory series is the first comprehensive account of the computer simulation of plant development. 150 illustrations, one third of them in colour, vividly demonstrate the spectacular results of the algorithms used to model plant shapes and developmental processes. The latest in computer-generated images allow us to look at plants growing, self-replicating, responding to external factors and even mutating, without becoming entangled in the underlying mathematical formulae involved. The authors place particular emphasis on Lindenmayer systems - a notion conceived by one of the authors, Aristid Lindenmayer, and internationally recognised for its exceptional elegance in modelling biological phenomena. Nonetheless, the two authors take great care to present a survey of alternative methods for plant modelling.

Other books in this category

Showing items 1 to 11 of 11
Categories:

Review quote

"This marvelous book will occupy an important place in the scientific literature." --Prof. Heinz-Otto Peitgen, author of The Beauty of Fractals "...will perform a valuable service by popularizing this enlightening and bewitching form of mathematics." --Steven Levy "...full of delights and an excellent introduction to L-systems" --Alvy Ray Smith, IEEE Graphics and its Applications

Back cover copy

This book is the first comprehensive volume on the computer simulation of plant development. It contains a full account of the algorithms used to model plant shapes and developmental processes, Lindenmayer systems in particular. With nearly 50 color plates, the spectacular results of the modeling are vividly illustrated.

Table of contents

1 Graphical modeling using L-systems.- 1.1 Rewriting systems.- 1.2 DOL-systems.- 1.3 Turtle interpretation of strings.- 1.4 Synthesis of DOL-systems.- 1.4.1 Edge rewriting.- 1.4.2 Node rewriting.- 1.4.3 Relationship between edge and node rewriting.- 1.5 Modeling in three dimensions.- 1.6 Branching structures.- 1.6.1 Axial trees.- 1.6.2 Tree OL-systems.- 1.6.3 Bracketed OL-systems.- 1.7 Stochastic L-systems.- 1.8 Context-sensitive L-systems.- 1.9 Growth functions.- 1.10 Parametric L-systems.- 1.10.1 Parametric OL-systems.- 1.10.2 Parametric 2L-systems.- 1.10.3 Turtle interpretation of parametric words.- 2 Modeling of trees.- 3 Developmental models of herbaceous plants.- 3.1 Levels of model specification.- 3.1.1 Partial L-systems.- 3.1.2 Control mechanisms in plants.- 3.1.3 Complete models.- 3.2 Branching patterns.- 3.3 Models of inflorescences.- 3.3.1 Monopodial inflorescences.- 3.3.2 Sympodial inflorescences.- 3.3.3 Polypodial inflorescences.- 3.3.4 Modified racemes.- 4 Phyllotaxis.- 4.1 The planar model.- 4.2 The cylindrical model.- 5 Models of plant organs.- 5.1 Predefined surfaces.- 5.2 Developmental surface models.- 5.3 Models of compound leaves.- 6 Animation of plant development.- 6.1 Timed DOL-systems.- 6.2 Selection of growth functions.- 6.2.1 Development of nonbranching filaments.- 6.2.2 Development of branching structures.- 7 Modeling of cellular layers.- 7.1 Map L-systems.- 7.2 Graphical interpretation of maps.- 7.3 Microsorium linguaeforme.- 7.4 Dryopteris thelypteris.- 7.5 Modeling spherical cell layers.- 7.6 Modeling 3D cellular structures.- 8 Fractal properties of plants.- 8.1 Symmetry and self-similarity.- 8.2 Plant models and iterated function systems.- Epilogue.- Appendix A Software environment for plant modeling.- A.1 A virtual laboratory in botany.- A.2 List of laboratory programs.- Appendix B About the figures.- Turtle interpretation of symbols.